Fractal and multifractal properties of exit times and Poincare recurrences

被引:41
作者
Afraimovich, V
Zaslavsky, GM
机构
[1] NYU, COURANT INST MATH SCI, NEW YORK, NY 10012 USA
[2] NYU, DEPT PHYS, NEW YORK, NY 10003 USA
关键词
D O I
10.1103/PhysRevE.55.5418
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Systems with chaotic dynamics possess anomalous statistical properties, and their trajectories do not correspond to the Gaussian process. This property imposes description of such time characteristics as the distribution of exit times or Poincare recurrences by introducing a (multi-) fractal timescale in order to satisfy the observed powerlike tails of the distributions. We introduce a corresponding phase-space-time partitioning and spectral function for dimensions, and make a connection between dimensions:and transport exponent that defines the anomalous (''strange'') kinetics.
引用
收藏
页码:5418 / 5426
页数:9
相关论文
共 54 条
[1]  
Afanasiev VV, 1991, CHAOS, V1
[2]   Pesin's dimension for Poincare recurrences [J].
Afraimovich, V .
CHAOS, 1997, 7 (01) :12-20
[3]  
[Anonymous], LECT APPL MATH
[4]   GEOMETRIC SCALING OF CORRELATION DECAY IN CHAOTIC BILLIARDS [J].
ARTUSO, R ;
CASATI, G ;
GUARNERI, I .
PHYSICAL REVIEW E, 1995, 51 (05) :R3807-R3810
[5]   Numerical experiments on billiards [J].
Artuso, R ;
Casati, G ;
Guarneri, I .
JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (1-2) :145-166
[6]  
BELOSHAPKIN VV, 1983, PHYS LETT A, V97, P121, DOI 10.1016/0375-9601(83)90191-3
[7]   Self-similarity and transport in the standard map [J].
Benkadda, S ;
Kassibrakis, S ;
White, RB ;
Zaslavsky, GM .
PHYSICAL REVIEW E, 1997, 55 (05) :4909-4917
[8]   STATISTICAL PROPERTIES OF 2-DIMENSIONAL PERIODIC LORENTZ GAS WITH INFINITE HORIZON [J].
BLEHER, PM .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) :315-373
[9]   THE ENTROPY FUNCTION FOR CHARACTERISTIC EXPONENTS [J].
BOHR, T ;
RAND, D .
PHYSICA D, 1987, 25 (1-3) :387-398
[10]  
Bunimovich L. A., 1985, Soviet Physics - JETP, V62, P842