The cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4G1

被引:80
作者
Hershey, PEC
McWhirter, SM
Gross, JD
Wagner, G
Alber, T
Sachs, AB
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.274.30.21297
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The association of eucaryotic translation initiation factor eLF4G with the cap-binding protein eIF4E establishes a critical link between the mRNA and the ribosome during translation initiation. This association requires a conserved seven amino acid peptide within eIF4G that binds to eIF4E, Here we report that a 98-amino acid fragment of S. cerevisiae eIF4G1 that contains this eIF4E binding peptide undergoes an unfolded to folded transition upon binding to eIF4E. The folding of the eIF4G1 domain was evidenced by the eIF4E-dependent changes in its protease sensitivity and H-1-N-15 HSQC NMR spectrum. Analysis of a series of charge-to-alanine mutations throughout the essential 55.4-kDa core of yeast eIF4G1 also revealed substitutions within this 98-amino acid region that led to reduced eIF4E binding in vivo and in vitro. These data suggest that the association of yeast eIF4E with eIF4G1 leads to the formation of a structured domain within eIF4G1 that could serve as a specific site for interactions with other components of the translational apparatus. They also suggest that the stability of the native eIF4E-eIF4G complex is determined by amino acid residues outside of the conserved seven-residue consensus sequence.
引用
收藏
页码:21297 / 21304
页数:8
相关论文
共 32 条
[1]   A novel inhibitor of cap-dependent translation initiation in yeast: P20 competes with eIF4G for binding to eIF4E [J].
Altmann, M ;
Schmitz, N ;
Berset, C ;
Trachsel, H .
EMBO JOURNAL, 1997, 16 (05) :1114-1121
[2]   TRANSLATION IN SACCHAROMYCES-CEREVISIAE - INITIATION-FACTOR 4E-DEPENDENT CELL-FREE SYSTEM [J].
ALTMANN, M ;
SONENBERG, N ;
TRACHSEL, H .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (10) :4467-4472
[3]   IMPROVED METHOD FOR PCR-MEDIATED SITE-DIRECTED MUTAGENESIS [J].
BARETTINO, D ;
FEIGENBUTZ, M ;
VALCARCEL, R ;
STUNNENBERG, HG .
NUCLEIC ACIDS RESEARCH, 1994, 22 (03) :541-542
[4]  
BOEKE JD, 1987, METHOD ENZYMOL, V154, P164
[5]   CDC33 ENCODES MESSENGER-RNA CAP-BINDING PROTEIN EIF-4E OF SACCHAROMYCES-CEREVISIAE [J].
BRENNER, C ;
NAKAYAMA, N ;
GOEBL, M ;
TANAKA, K ;
TOHE, A ;
MATSUMOTO, K .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (08) :3556-3559
[6]  
CRUZ J, 1997, P NATL ACAD SCI USA, V94, P5201
[7]   HIGH-LEVEL SYNTHESIS IN ESCHERICHIA-COLI OF FUNCTIONAL CAP-BINDING EUKARYOTIC INITIATION-FACTOR EIF-4E AND AFFINITY PURIFICATION USING A SIMPLIFIED CAP-ANALOG RESIN [J].
EDERY, I ;
ALTMANN, M ;
SONENBERG, N .
GENE, 1988, 74 (02) :517-525
[8]  
Feigenblum D, 1996, MOL CELL BIOL, V16, P5450
[9]   4E binding proteins inhibit the translation factor eIF4E without folded structure [J].
Fletcher, CM ;
McGuire, AM ;
Gingras, AC ;
Li, HJ ;
Matsuo, H ;
Sonenberg, N ;
Wagner, G .
BIOCHEMISTRY, 1998, 37 (01) :9-15
[10]  
GOYER C, 1989, J BIOL CHEM, V264, P7603