Resistivity in percolation networks of one-dimensional elements with a length distribution

被引:42
作者
Hicks, Jeremy [1 ]
Behnam, Ashkan [1 ]
Ural, Ant [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 01期
关键词
electrical resistivity; Monte Carlo methods; nanotubes; nanowires; percolation; random processes; CARBON; THRESHOLD; DIODES;
D O I
10.1103/PhysRevE.79.012102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
One-dimensional (1D) nanoelements, such as nanotubes and nanowires, making up percolation networks are typically modeled as fixed length sticks in order to calculate their electrical properties. In reality, however, the lengths of these 1D nanoelements comprising such networks are not constant, rather they exhibit a length distribution. Using Monte Carlo simulations, we have studied the effect of this nanotube and/or nanowire length distribution on the resistivity in 1D nanoelement percolation networks. We find that, for junction resistance-dominated random networks, the resistivity correlates with root-mean-square element length, whereas for element resistance-dominated random networks, the resistivity scales with average element length. If the elements are preferentially aligned, we find that these two trends shift toward higher power means. We explain the physical origins of these simulation results using geometrical arguments. These results emphasize the importance of the element length distribution in determining the resistivity in these networks.
引用
收藏
页数:4
相关论文
共 20 条
[1]   EXCLUDED VOLUME AND ITS RELATION TO THE ONSET OF PERCOLATION [J].
BALBERG, I ;
ANDERSON, CH ;
ALEXANDER, S ;
WAGNER, N .
PHYSICAL REVIEW B, 1984, 30 (07) :3933-3943
[2]   COMPUTER STUDY OF THE PERCOLATION-THRESHOLD IN A TWO-DIMENSIONAL ANISOTROPIC SYSTEM OF CONDUCTING STICKS [J].
BALBERG, I ;
BINENBAUM, N .
PHYSICAL REVIEW B, 1983, 28 (07) :3799-3812
[3]   Computational study of geometry-dependent resistivity scaling in single-walled carbon nanotube films [J].
Behnam, Ashkan ;
Ural, Ant .
PHYSICAL REVIEW B, 2007, 75 (12)
[4]   Resistivity scaling in single-walled carbon nanotube films patterned to submicron dimensions [J].
Behnam, Ashkan ;
Noriega, Leila ;
Choi, Yongho ;
Wu, Zhuangchun ;
Rinzler, Andrew G. ;
Ural, Ant .
APPLIED PHYSICS LETTERS, 2006, 89 (09)
[5]   Effects of nanotube alignment and measurement direction on percolation resistivity in single-walled carbon nanotube films [J].
Behnam, Ashkan ;
Guo, Jing ;
Ural, Ant .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (04)
[6]   FINITE-SIZE EFFECTS IN TWO-DIMENSIONAL CONTINUUM PERCOLATION [J].
BOUDVILLE, WJ ;
MCGILL, TC .
PHYSICAL REVIEW B, 1989, 39 (01) :369-373
[7]   Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J].
Collins, PG ;
Bradley, K ;
Ishigami, M ;
Zettl, A .
SCIENCE, 2000, 287 (5459) :1801-1804
[8]   GEOMETRICAL PERCOLATION-THRESHOLD OF OVERLAPPING ELLIPSOIDS [J].
GARBOCZI, EJ ;
SNYDER, KA ;
DOUGLAS, JF ;
THORPE, MF .
PHYSICAL REVIEW E, 1995, 52 (01) :819-828
[9]   Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks [J].
Hecht, David ;
Hu, Liangbing ;
Gruner, George .
APPLIED PHYSICS LETTERS, 2006, 89 (13)
[10]  
HICKS J, UNPUB