Fundamental Measure Theory for Inhomogeneous Fluids of Nonspherical Hard Particles

被引:107
作者
Hansen-Goos, Hendrik [1 ,2 ]
Mecke, Klaus [3 ]
机构
[1] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Inst Theoret & Angew Phys, D-70569 Stuttgart, Germany
[3] Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany
关键词
DENSITY-FUNCTIONAL THEORY; FREE-ENERGY MODEL; SPHERE MIXTURES; PHASE; RODS;
D O I
10.1103/PhysRevLett.102.018302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the Gauss-Bonnet theorem we deconvolute exactly the Mayer f-function for arbitrarily shaped convex hard bodies in a series of tensorial weight functions, each depending only on the shape of a single particle. This geometric result allows the derivation of a free energy density functional for inhomogeneous hard-body fluids which reduces to Rosenfeld's fundamental measure theory [Phys. Rev. Lett. 63, 980 (1989)] when applied to hard spheres. The functional captures the isotropic-nematic transition for the hard-spherocylinder fluid in contrast with previous attempts. Comparing with data from Monte Carlo simulations for hard spherocylinders in contact with a planar hard wall, we show that the new functional also improves upon previous functionals in the description of inhomogeneous isotropic fluids.
引用
收藏
页数:4
相关论文
共 21 条
[1]   Tracing the phase boundaries of hard spherocylinders [J].
Bolhuis, P ;
Frenkel, D .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (02) :666-687
[2]  
Chavel I., 1993, Riemannian Geometry: A Modern Introduction
[3]   Density functional for anisotropic fluids [J].
Cinacchi, G ;
Schmid, F .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (46) :12223-12234
[4]   Close to the edge of fundamental measure theory:: a density functional for hard-sphere mixtures [J].
Cuesta, JA ;
Martínez-Ratón, Y ;
Tarazona, P .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (46) :11965-11980
[5]   Fluid mixtures of parallel hard cubes [J].
Cuesta, JA .
PHYSICAL REVIEW LETTERS, 1996, 76 (20) :3742-3745
[6]   Entropy-driven formation of the gyroid cubic phase [J].
Ellison, L. J. ;
Michel, D. J. ;
Barmes, F. ;
Cleaver, D. J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[7]   Density functional theory for colloidal mixtures of hard platelets, rods, and spheres [J].
Esztermann, A ;
Reich, H ;
Schmidt, M .
PHYSICAL REVIEW E, 2006, 73 (01)
[8]  
Esztermann A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.022501
[9]   NATURE OF THE LIQUID-VAPOR INTERFACE AND OTHER TOPICS IN THE STATISTICAL-MECHANICS OF NONUNIFORM, CLASSICAL FLUIDS [J].
EVANS, R .
ADVANCES IN PHYSICS, 1979, 28 (02) :143-200
[10]   Density functional theory for hard-sphere mixtures: the White Bear version mark II [J].
Hansen-Goos, Hendrik ;
Roth, Roland .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (37) :8413-8425