Identification of correct regions in protein models using structural, alignment, and consensus information

被引:142
作者
Wallner, B [1 ]
Elofsson, A [1 ]
机构
[1] Stockholm Univ, Stockholm Bioinformat Ctr, SE-10691 Stockholm, Sweden
关键词
homology modeling; fold recognition; structural information; alignment information; hybrid model; neural networks; protein model;
D O I
10.1110/ps.051799606
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this study we present two methods to predict the local quality of a protein model: ProQres and ProQprof. ProQres is based on structural features that can be calculated from a model, while ProQprof uses alignment information and can only be used if the model is created from an alignment. In addition, we also propose a simple approach based on local consensus, Pcons-local. We show that all these methods perform better than state-of-the-art methodologies and that, when applicable, the consensus approach is by far the best approach to predict local structure quality. It was also found that ProQprof performed better than other methods for models based on distant relationships, while ProQres performed best for models based on closer relationship, i.e., a model has to be reasonably good to make a structural evaluation useful. Finally, we show that a combination of ProQprof and ProQres ( ProQlocal) performed better than any other nonconsensus method for both high- and low-quality models. Additional information and Web servers are available at: http://www.sbc.su.se/similar to bjorn/ProQ/.
引用
收藏
页码:900 / 913
页数:14
相关论文
共 60 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
Bishop C. M., 1996, Neural networks for pattern recognition
[3]   PREDICTION OF HUMAN MESSENGER-RNA DONOR AND ACCEPTOR SITES FROM THE DNA-SEQUENCE [J].
BRUNAK, S ;
ENGELBRECHT, J ;
KNUDSEN, S .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 220 (01) :49-65
[4]  
Bujnicki JM, 2001, PROTEINS, P184
[5]   VERIFICATION OF PROTEIN STRUCTURES - PATTERNS OF NONBONDED ATOMIC INTERACTIONS [J].
COLOVOS, C ;
YEATES, TO .
PROTEIN SCIENCE, 1993, 2 (09) :1511-1519
[6]   A study of quality measures for protein threading models [J].
Cristobal, Susana ;
Zemla, Adam ;
Fischer, Daniel ;
Rychlewski, Leszek ;
Elofsson, Arne .
BMC BIOINFORMATICS, 2001, 2 (1)
[7]   Identifying native-like protein structures using physics-based potentials [J].
Dominy, BN ;
Brooks, CL .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2002, 23 (01) :147-160
[8]   VERIFY3D: Assessment of protein models with three-dimensional profiles [J].
Eisenberg, D ;
Luthy, R ;
Bowie, JU .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :396-404
[9]   ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites [J].
Emanuelsson, O ;
Nielsen, H ;
Von Heijne, G .
PROTEIN SCIENCE, 1999, 8 (05) :978-984
[10]   Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the surface generalized born solvent model [J].
Felts, AK ;
Gallicchio, E ;
Wallqvist, A ;
Levy, RM .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 48 (02) :404-422