Diffusional Channeling in the Sulfate-Activating Complex: Combined Continuum Modeling and Coarse-Grained Brownian Dynamics Studies

被引:21
作者
Cheng, Yuhui [1 ,2 ,3 ]
Chang, Chia-en A. [6 ]
Yu, Zeyun [4 ]
Zhang, Yongjie [7 ]
Sun, Meihao [8 ]
Leyh, Thomas S. [8 ]
Holst, Michael J. [4 ]
McCammon, J. Andrew [1 ,2 ,3 ,5 ]
机构
[1] Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
[6] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[7] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[8] Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10467 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1529/biophysj.108.140038
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Enzymes required for sulfur metabolism have been suggested to gain efficiency by restricted diffusion (i.e., channeling) of an intermediate APS(2)-between active sites. This article describes modeling of the whole channeling process by numerical solution of the Smoluchowski diffusion equation, as well as by coarse-grained Brownian dynamics. The results suggest that electrostatics plays an essential role in the APS(2)-channeling. Furthermore, with coarse-grained Brownian dynamics, the substrate channeling process has been studied with reactions in multiple active sites. Our simulations provide a bridge for numerical modeling with Brownian dynamics to simulate the complicated reaction and diffusion and raise important questions relating to the electrostatically mediated substrate channeling in vitro, in situ, and in vivo.
引用
收藏
页码:4659 / 4667
页数:9
相关论文
共 46 条
[11]   A GENERALIZED THEORY OF THE TRANSITION TIME FOR SEQUENTIAL ENZYME-REACTIONS [J].
EASTERBY, JS .
BIOCHEMICAL JOURNAL, 1981, 199 (01) :155-161
[12]   Metabolite channeling in the origin of life [J].
Edwards, MR .
JOURNAL OF THEORETICAL BIOLOGY, 1996, 179 (04) :313-322
[13]   Atomistic Simulations of competition between substrates binding to an enzyme [J].
Elcock, AH .
BIOPHYSICAL JOURNAL, 2002, 82 (05) :2326-2332
[14]   Electrostatic channeling in the bifunctional enzyme dihydrofolate reductase-thymidylate synthase [J].
Elcock, AH ;
Potter, MJ ;
Matthews, DA ;
Knighton, DR ;
McCammon, JA .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 262 (03) :370-374
[15]   Evidence for electrostatic channeling in a fusion protein of malate dehydrogenase and citrate synthase [J].
Elcock, AH ;
MaCammon, JA .
BIOCHEMISTRY, 1996, 35 (39) :12652-12658
[16]   BROWNIAN DYNAMICS WITH HYDRODYNAMIC INTERACTIONS [J].
ERMAK, DL ;
MCCAMMON, JA .
JOURNAL OF CHEMICAL PHYSICS, 1978, 69 (04) :1352-1360
[17]   Ammonia channeling in bacterial glucosamine-6-phosphate synthase (Glms): Molecular dynamics simulations and kinetic studies of protein mutants [J].
Floquet, Nicolas ;
Mouilleron, Stephane ;
Daher, Rasha ;
Maigret, Bernard ;
Badet, Bernard ;
Badet-Denisot, Marie-Ange .
FEBS LETTERS, 2007, 581 (16) :2981-2987
[18]  
Holst M, 2000, J COMPUT CHEM, V21, P1319, DOI 10.1002/1096-987X(20001130)21:15<1319::AID-JCC1>3.0.CO
[19]  
2-8
[20]   Channeling of substrates and intermediates in enzyme-catalyzed reactions [J].
Huang, XY ;
Holden, HM ;
Raushel, FM .
ANNUAL REVIEW OF BIOCHEMISTRY, 2001, 70 :149-180