Generalized synchronization of chaos: The auxiliary system approach

被引:545
作者
Abarbanel, HDI
Rulkov, NF
Sushchik, MM
机构
[1] UNIV CALIF SAN DIEGO, SCRIPPS INST OCEANOG, MARINE PHYS LAB, LA JOLLA, CA 92093 USA
[2] UNIV CALIF SAN DIEGO, INST NONLINEAR SCI, LA JOLLA, CA 92093 USA
关键词
D O I
10.1103/PhysRevE.53.4528
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Synchronization of chaotic oscillators in a generalized sense leads to richer behavior than identical chaotic oscillations in coupled systems. It may imply a more complicated connection between the synchronized trajectories in the state spaces of coupled systems. We suggest a method here that can be used to detect and study generalized synchronization in drive-response systems. This technique, the auxiliary system method, utilizes a second, identical response system to monitor the synchronized motions. The method can be implemented both numerically and experimentally and in some cases it leads to analytical results for generalized synchronization.
引用
收藏
页码:4528 / 4535
页数:8
相关论文
共 15 条
[1]   BLENDING CHAOTIC ATTRACTORS USING THE SYNCHRONIZATION OF CHAOS [J].
ABARBANEL, HDI ;
RULKOV, NF ;
SUSHCHIK, MM .
PHYSICAL REVIEW E, 1995, 52 (01) :214-217
[2]  
ABARBANEL HDI, UNPUB
[3]  
AFRAIMOVICH VS, 1986, IZV VUZ RADIOFIZ+, V29, P1050
[4]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[5]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[6]  
GAPONOVGREKHOV AV, 1984, JETP LETT+, V39, P688
[7]   DESYNCHRONIZATION BY PERIODIC-ORBITS [J].
HEAGY, JF ;
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW E, 1995, 52 (02) :R1253-R1256
[8]   OSCILLATION AND CHAOS IN PHYSIOLOGICAL CONTROL-SYSTEMS [J].
MACKEY, MC ;
GLASS, L .
SCIENCE, 1977, 197 (4300) :287-288
[9]   BLOWOUT BIFURCATIONS - THE OCCURRENCE OF RIDDLED BASINS AND ON OFF INTERMITTENCY [J].
OTT, E ;
SOMMERER, JC .
PHYSICS LETTERS A, 1994, 188 (01) :39-47
[10]   STATISTICS FOR MATHEMATICAL PROPERTIES OF MAPS BETWEEN TIME-SERIES EMBEDDINGS [J].
PECORA, LM ;
CARROLL, TL ;
HEAGY, JF .
PHYSICAL REVIEW E, 1995, 52 (04) :3420-3439