Information geometry of estimating functions in semi-parametric statistical models

被引:59
作者
Amari, S [1 ]
Kawanabe, M [1 ]
机构
[1] RIKEN,INST PHYS & CHEM RES,FRONTIER RES PROGRAM,WAKO,SAITAMA 35101,JAPAN
关键词
dual geometry; dual parallel transport; efficient score function; estimating function; Hilbert fibred structure; m-curvature free; semi-parametric model;
D O I
10.2307/3318651
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For semi-parametric statistical estimation, when an estimating function exists, it often provides an efficient or a good consistent estimator of the parameter of interest against nuisance parameters of infinite dimensions. The present paper elucidates the structure of estimating functions, based on the dual differential geometry of statistical inference and its extension to fibre bundles. The paper studies the following problems. First, when does an estimating function exist and what is the set of all the estimating functions? Second, how are the asymptotic variances of the estimators derived from estimating functions and when are the estimators efficient? Third, how do we adaptively choose a practically good (quasi-)estimating function from the observed data? The concept of m-curvature freeness plays a fundamental role in solving the above problems.
引用
收藏
页码:29 / 54
页数:26
相关论文
共 37 条
[1]   INFORMATION GEOMETRY OF BOLTZMANN MACHINES [J].
AMARI, S ;
KURATA, K ;
NAGAOKA, H .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (02) :260-271
[2]   DIFFERENTIAL GEOMETRY OF A PARAMETRIC FAMILY OF INVERTIBLE LINEAR-SYSTEMS - RIEMANNIAN METRIC, DUAL AFFINE CONNECTIONS, AND DIVERGENCE [J].
AMARI, S .
MATHEMATICAL SYSTEMS THEORY, 1987, 20 (01) :53-82
[3]   ESTIMATION IN THE PRESENCE OF INFINITELY MANY NUISANCE PARAMETERS - GEOMETRY OF ESTIMATING FUNCTIONS [J].
AMARI, S ;
KUMON, M .
ANNALS OF STATISTICS, 1988, 16 (03) :1044-1068
[4]  
Amari S., 1985, LECT NOTES STAT, V28, DOI DOI 10.1007/978-1-4612-5056-2
[5]  
Amari S.-i., 1987, GEOMETRIZATION STAT, P123
[6]   STATISTICAL-INFERENCE UNDER MULTITERMINAL RATE RESTRICTIONS - A DIFFERENTIAL GEOMETRIC APPROACH [J].
AMARI, SI ;
HAN, TS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (02) :217-227
[7]  
ANDERSEN EB, 1970, J ROY STAT SOC B, V32, P283
[8]   LIKELIHOOD AND OBSERVED GEOMETRIES [J].
BARNDORFFNIELSEN, OE .
ANNALS OF STATISTICS, 1986, 14 (03) :856-873
[9]   INFORMATION AND ASYMPTOTIC EFFICIENCY IN PARAMETRIC NONPARAMETRIC MODELS [J].
BEGUN, JM ;
HALL, WJ ;
HUANG, WM ;
WELLNER, JA .
ANNALS OF STATISTICS, 1983, 11 (02) :432-452
[10]  
BHANJA J, 1992, SANKHYA SER A, V54, P1