A continuity equation for the simulation of the current-voltage curve and the time-dependent properties of dye-sensitized solar cells

被引:49
作者
Anta, Juan A. [1 ]
Idigoras, Jesus [1 ]
Guillen, Elena [1 ]
Villanueva-Cab, Julio [2 ]
Mandujano-Ramirez, Humberto J. [2 ]
Oskam, Gerko [2 ]
Pelleja, Laila [3 ]
Palomares, Emilio [3 ,4 ]
机构
[1] Univ Pablo Olavide, Area Quim Fis, E-41013 Seville, Spain
[2] CINVESTAV IPN, Dept Fis Aplicada, Merida 97310, Yucatan, Mexico
[3] Inst Chem Res Catalonia ICIQ, E-43007 Tarragona, Spain
[4] ICREA, E-80810 Barcelona, Spain
关键词
NANOSTRUCTURED SEMICONDUCTOR ELECTRODES; INTENSITY DEPENDENCE; DIFFUSION LENGTH; CHARGE-TRANSPORT; PHOTOELECTROCHEMICAL CELLS; DISORDERED SEMICONDUCTORS; ANOMALOUS DIFFUSION; TIO2; ELECTRODES; BACK-REACTION; STEADY-STATE;
D O I
10.1039/c2cp40719a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A numerical model that simulates the steady-state current-voltage curve and the time-dependent response of a dye-sensitized solar cell with a single continuity equation is derived. It is shown that the inclusion of the multiple-trapping model, the quasi-static approximation and non-linear recombination kinetics leads to a continuity equation for the total electron density in the photoanode with an electron density-dependent diffusion coefficient and a density-dependent pseudo-first order recombination constant. All parameters in the model can be related to quantities accessible experimentally. The required power exponents are taken from impedance spectroscopy measurements at different voltages. The model provides new insights into the physical interpretation of the power exponents. Modeling examples involving a high-efficiency TiO2-based dye solar cell and a ZnO-based dye solar cell are presented. It is demonstrated that the model reproduces the transient behavior of the cell under small perturbations. The spatial dependence of the recombination rate and the influence of film thickness and of voltage dependent injection efficiency on cell performance are studied. The implications of the model are discussed in terms of efficiencies potentially attainable in dye-sensitized solar cells and other kinds of solar cells with a diffusional mechanism of charge transport.
引用
收藏
页码:10285 / 10299
页数:15
相关论文
共 80 条
[1]   A numerical model for charge transport and recombination in dye-sensitized solar cells [J].
Anta, JA ;
Casanueva, F ;
Oskam, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (11) :5372-5378
[2]   Charge transport model for disordered materials:: Application to sensitized TiO2 -: art. no. 125324 [J].
Anta, JA ;
Nelson, J ;
Quirke, N .
PHYSICAL REVIEW B, 2002, 65 (12) :1-10
[3]   Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation [J].
Anta, Juan A. ;
Mora-Sero, Ivan ;
Dittrich, Thomas ;
Bisquert, Juan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (30) :4478-4485
[4]   Dynamics of charge separation and trap-limited electron transport in TiO2 nanostructures [J].
Anta, Juan A. ;
Mora-Sero, Ivan ;
Dittrich, Thomas ;
Bisquert, Juan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (37) :13997-14000
[5]  
Ashcroft N., 2011, Solid State Physics
[6]   AVALANCHE DYNAMICS FROM ANOMALOUS DIFFUSION [J].
BANTAY, P ;
JANOSI, IM .
PHYSICAL REVIEW LETTERS, 1992, 68 (13) :2058-2061
[7]   Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour [J].
Barnes, Piers R. F. ;
Anderson, Assaf Y. ;
Durrant, James R. ;
O'Regan, Brian C. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (13) :5798-5816
[8]   Factors controlling charge recombination under dark and light conditions in dye sensitised solar cells [J].
Barnes, Piers R. F. ;
Anderson, Assaf Y. ;
Juozapavicius, Mindaugas ;
Liu, Lingxuan ;
Li, Xiaoe ;
Palomares, Emilio ;
Forneli, Amparo ;
O'Regan, Brian C. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (08) :3547-3558
[9]  
Bisquert J, 2002, J PHYS CHEM B, V106, P325, DOI 10.1021/jp01194lg
[10]   Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells [J].
Bisquert, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (24) :5360-5364