Geometric phase in quantum billiards with a pointlike scatterer

被引:9
作者
Cheon, T [1 ]
Shigehara, T [1 ]
机构
[1] UNIV TOKYO, CTR COMP, BUNKYO KU, TOKYO 113, JAPAN
关键词
SYSTEMS;
D O I
10.1103/PhysRevLett.76.1770
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine the quantum energy levels of rectangular billiards with a pointlike scatterer in one and two dimensions. By varying the location and the strength of the scatterer, we systematically find diabolical degeneracies among various levels. The associated Berry phase is illustrated, and the existence of localized wave functions is pointed out. In one dimension, even the ground state is shown to display the sign reversal with a mechanism to circumvent the Sturm-Liouville theorem.
引用
收藏
页码:1770 / 1773
页数:4
相关论文
共 13 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]  
Albeverio S., 1988, SOLVABLE MODELS QUAN
[3]   DIABOLICAL POINTS IN THE SPECTRA OF TRIANGLES [J].
BERRY, MV ;
WILKINSON, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1984, 392 (1802) :15-43
[4]  
BERRY MV, 1984, P ROY SOC LOND A MAT, V392, P43
[5]   SMOOTHED WAVE-FUNCTIONS OF CHAOTIC QUANTUM-SYSTEMS [J].
BOGOMOLNY, EB .
PHYSICA D, 1988, 31 (02) :169-189
[6]   QUANTUM LEVEL STATISTICS OF PSEUDOINTEGRABLE BILLIARDS [J].
CHEON, T ;
COHEN, TD .
PHYSICAL REVIEW LETTERS, 1989, 62 (24) :2769-2772
[7]  
COURANT R, 1931, METHODEN MATH PHYSIK
[8]   BOUND-STATE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC HAMILTONIAN-SYSTEMS - SCARS OF PERIODIC-ORBITS [J].
HELLER, EJ .
PHYSICAL REVIEW LETTERS, 1984, 53 (16) :1515-1518
[9]   INTERSECTION OF POTENTIAL ENERGY SURFACES IN POLYATOMIC MOLECULES [J].
HERZBERG, G ;
LONGUETHIGGINS, HC .
DISCUSSIONS OF THE FARADAY SOCIETY, 1963, (35) :77-&
[10]   WAVE CHAOS IN QUANTIZED CLASSICALLY NONCHAOTIC SYSTEMS [J].
SEBA, P ;
ZYCZKOWSKI, K .
PHYSICAL REVIEW A, 1991, 44 (06) :3457-3465