Organization of common synaptic drive to motoneurones during fictive locomotion in the spinal cat

被引:26
作者
Nielsen, JB [1 ]
Conway, BA
Halliday, DM
Perreault, MC
Hultborn, H
机构
[1] Univ Copenhagen, Panum Inst, Dept Med Physiol, Div Neurophysiol, Blegdamsvej 3, DK-2200 Greifswald N, Germany
[2] Univ Copenhagen, Inst Phys Exercise & Sports Sci, DK-2100 Copenhagen, Denmark
[3] Univ Strathclyde, Bioengn Unit, Glasgow G4 0NW, Lanark, Scotland
[4] Univ York, Dept Elect, York YO10 5DD, N Yorkshire, England
[5] Univ Oslo, Dept Physiol, Oslo, Norway
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2005年 / 569卷 / 01期
关键词
D O I
10.1113/jphysiol.2005.091744
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The basic locomotor rhythm in the cat is generated by a neuronal network in the spinal cord. The exact organization of this network and its drive to the spinal motoneurones is unknown. The purpose of the present study was to use time (cumulant density) and frequency domain (coherence) analysis to examine the organization of the last order drive to motoneurones during fictive locomotion (evoked by application of nialamide and dihydroxyphenylalanine (DOPA)) in the spinal cat. In all cats, narrow central synchronization peaks (half-width < 3 ms) were observed in cumulants estimated between electroneurograms (ENGs) of close synergists, but not between nerves belonging to muscles actin on different joints or to antagonistic muscles. Coherence was not observed at frequencies above 100 Hz and was mainly observed between synergists. Intracellular recording was obtained from a population of 70 lumbar motoneurones. Significant short-term synchronization was observed between the individual intracellular recordings and the ENGs recorded from nerves of the same pool and of close synergists. Recordings from 34 pairs of motoneurones (10 pairs belonged to the same motor pool, 11 pairs to close synergists and 13 pairs to antagonistic pools) failed to reveal any short-lasting synchronization. These data demonstrate that short-term synchronization during fictive locomotion is relatively weak and is restricted to close synergists. In addition, coherence analysis failed to identify any specific rhythmic component in the locomotor drive that could be associated with this synchronization. These results resemble findings obtained during human treadmill walking and imply that the spinal interneurones participating in the generation of the locomotor rhythm are themselves weakly synchronized. The restricted synchronization within the locomotor drive to motoneuronal pools may be a feature of the locomotor generating networks that is related to the ability of these networks to produce highly adaptive patterns of muscle activity during locomotion.
引用
收藏
页码:291 / 304
页数:14
相关论文
共 32 条
[1]  
[Anonymous], 1981, Time series data analysis and theory, DOI 10.1201/b15288-24
[2]  
Bloomfield P, 2000, FOURIER ANAL TIME SE
[4]  
Burke RE, 2001, ADV NEUROL, V87, P11
[5]   MAINTAINED CHANGES IN MOTONEURONAL EXCITABILITY BY SHORT-LASTING SYNAPTIC INPUTS IN THE DECEREBRATE CAT [J].
CRONE, C ;
HULTBORN, H ;
KIEHN, O ;
MAZIERES, L ;
WIGSTROM, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 405 :321-343
[6]   THE FREQUENCY CONTENT OF COMMON SYNAPTIC INPUTS TO MONONEURONES STUDIED DURING VOLUNTARY ISOMETRIC CONTRACTION IN MAN [J].
FARMER, SF ;
BREMNER, FD ;
HALLIDAY, DM ;
ROSENBERG, JR ;
STEPHENS, JA .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 470 :127-155
[7]  
Gabor D., 1946, J I ELEC ENGRS PART, V93, P429, DOI [10.1049/JI-3-2.1946.0074, DOI 10.1049/JI-3-2.1946.0074, 10.1049/ji-3-2.1946.0074]
[8]  
GRILLNER S, 1979, EXP BRAIN RES, V34, P241
[9]   NEUROBIOLOGICAL BASES OF RHYTHMIC MOTOR ACTS IN VERTEBRATES [J].
GRILLNER, S .
SCIENCE, 1985, 228 (4696) :143-148
[10]   A framework for the analysis of mixed time series/point process data - Theory and application to the study of physiological tremor, single motor unit discharges and electromyograms [J].
Halliday, DM ;
Rosenberg, JR ;
Amjad, AM ;
Breeze, P ;
Conway, BA ;
Farmer, SF .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1995, 64 (2-3) :237-278