Fatty acid-derived signals in plants

被引:374
作者
Weber, H [1 ]
机构
[1] Univ Lausanne, Inst Ecol, Gene Express Lab, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1016/S1360-1385(02)02250-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants synthesize many fatty acid derivatives, several of which play important regulatory roles. Jasmonates are the best characterized examples. Jasmonate-insensitive mutants and mutants with a constitutive jasmonate response have given us new insights into jasmonate signalling. The jasmonate biosynthesis mutant opr3 allowed the dissection of cyclopentanone and cyclopentenone signalling,thus defining specific roles for these molecules. Jasmonate signalling is a complex network of individual signals and recent findings on specific activities of methyl jasmonate and (Z)-jasmone add to this picture. In addition, there are keto, hydroxy and hydroperoxy fatty acids that might be involved in cell death and the expression of stress-related genes. Finally, there are bruchins and volicitin, signal molecules from insects that are perceived by plants in the picomole to femtomole range. They highlight the importance of fatty acid-derived molecules in interspecies communication and in plant defence.
引用
收藏
页码:217 / 224
页数:8
相关论文
共 59 条
[1]   An elicitor of plant volatiles from beet armyworm oral secretion [J].
Alborn, HT ;
Turlings, TCJ ;
Jones, TH ;
Stenhagen, G ;
Loughrin, JH ;
Tumlinson, JH .
SCIENCE, 1997, 276 (5314) :945-949
[2]   Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR-1 gene expression [J].
Anderson, MD ;
Chen, ZX ;
Klessig, DF .
PHYTOCHEMISTRY, 1998, 47 (04) :555-566
[3]   Merging molecular and ecological approaches in plant-insect interactions [J].
Baldwin, IT ;
Halitschke, R ;
Kessler, A ;
Schittko, U .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (04) :351-358
[4]   Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding [J].
Berger, S ;
Bell, E ;
Mullet, JE .
PLANT PHYSIOLOGY, 1996, 111 (02) :525-531
[5]   Jasmonate-related mutants of Arabidopsis as tools for studying stress signaling [J].
Berger, S .
PLANTA, 2002, 214 (04) :497-504
[6]   New roles for cis-jasmone as an insect semiochemical and in plant defense [J].
Birkett, MA ;
Campbell, CAM ;
Chamberlain, K ;
Guerrieri, E ;
Hick, AJ ;
Martin, JL ;
Matthes, M ;
Napier, JA ;
Pettersson, J ;
Pickett, JA ;
Poppy, GM ;
Pow, EM ;
Pye, BJ ;
Smart, LE ;
Wadhams, GH ;
Wadhams, LJ ;
Woodcock, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) :9329-9334
[7]   Structure-activity analyses reveal the existence of two separate groups of active octadecanoids in elicitation of the tendril-coiling response of Bryonia dioica Jacq. [J].
Blechert, S ;
Bockelmann, C ;
Füsslein, M ;
Von Schrader, T ;
Stelmach, B ;
Niesel, U ;
Weiler, EW .
PLANTA, 1999, 207 (03) :470-479
[8]   Biosynthesis and action of jasmonates in plants [J].
Creelman, RA ;
Mullet, JE .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1997, 48 :355-381
[9]   Involvement of the Arabidopsis α-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death [J].
de Leon, IP ;
Sanz, A ;
Hamberg, M ;
Castresana, C .
PLANT JOURNAL, 2002, 29 (01) :61-72
[10]   F-box proteins and protein degradation: An emerging theme in cellular regulation [J].
del Pozo, JC ;
Estelle, M .
PLANT MOLECULAR BIOLOGY, 2000, 44 (02) :123-128