Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins

被引:132
作者
Beaudouin, JL
Mora-Bermúdez, F
Klee, T
Daigle, N
Ellenberg, J
机构
[1] European Mol Biol Lab, Gene Express Program, European Mol Biol Lab, Heidelberg, Germany
[2] European Mol Biol Lab, Cell Biol Biophys Program, European Mol Biol Lab, Heidelberg, Germany
关键词
D O I
10.1529/biophysj.105.071241
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Quantitative characterization of protein interactions under physiological conditions is vital for systems biology. Fluorescence photobleaching/activation experiments of GFP-tagged proteins are frequently used for this purpose, but robust analysis methods to extract physicochemical parameters from such data are lacking. Here, we implemented a reaction-diffusion model to determine the contributions of protein interaction and diffusion on fluorescence redistribution. The model was validated and applied to five chromatin-interacting proteins probed by photoactivation in living cells. We found that very transient interactions are common for chromatin proteins. Their observed mobility was limited by the amount of free protein available for diffusion but not by the short residence time of the bound proteins. Individual proteins thus locally scan chromatin for binding sites, rather than diffusing globally before rebinding at random nuclear positions. By taking the real cellular geometry and the inhomogeneous distribution of binding sites into account, our model provides a general framework to analyze the mobility of fluorescently tagged factors. Furthermore, it defines the experimental limitations of fluorescence perturbation experiments and highlights the need for complementary methods to measure transient biochemical interactions in living cells.
引用
收藏
页码:1878 / 1894
页数:17
相关论文
共 60 条
[1]   Chromatin dynamics in interphase nuclei and its implications for nuclear structure [J].
Abney, JR ;
Cutler, B ;
Fillbach, ML ;
Axelrod, D ;
Scalettar, BA .
JOURNAL OF CELL BIOLOGY, 1997, 137 (07) :1459-1468
[2]  
Alberts B., 1994, MOL BIOL CELL
[3]   MOBILITY MEASUREMENT BY ANALYSIS OF FLUORESCENCE PHOTOBLEACHING RECOVERY KINETICS [J].
AXELROD, D ;
KOPPEL, DE ;
SCHLESSINGER, J ;
ELSON, E ;
WEBB, WW .
BIOPHYSICAL JOURNAL, 1976, 16 (09) :1055-1069
[4]   Dynamics of chromatin, proteins, and bodies within the cell nucleus [J].
Belmont, A .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (03) :304-310
[5]  
BERK DA, 1993, BIOPHYS J, V65, P2428, DOI 10.1016/S0006-3495(93)81326-2
[6]   Ran binds to chromatin by two distinct mechanisms [J].
Bilbao-Cortés, D ;
Hetzer, M ;
Längst, G ;
Becker, PB ;
Mattaj, IW .
CURRENT BIOLOGY, 2002, 12 (13) :1151-1156
[7]  
Bormann Guy, 2001, P189
[8]   Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope [J].
Braeckmans, K ;
Peeters, L ;
Sanders, NN ;
De Smedt, SC ;
Demeester, J .
BIOPHYSICAL JOURNAL, 2003, 85 (04) :2240-2252
[9]   Histone H1 and the dynamic regulation of chromatin function [J].
Brown, DT .
BIOCHEMISTRY AND CELL BIOLOGY, 2003, 81 (03) :221-227
[10]   On the movements of nuclear components in living cells [J].
Bubulya, PA ;
Spector, DL .
EXPERIMENTAL CELL RESEARCH, 2004, 296 (01) :4-11