Three-dimensional, finite deformation, viscoplastic constitutive models for polymeric materials

被引:130
作者
Bardenhagen, SG
Stout, MG
Gray, GT
机构
[1] LOS ALAMOS NATL LAB,DIV THEORET,GRP T3,LOS ALAMOS,NM 87545
[2] LOS ALAMOS NATL LAB,DIV MAT SCI & TECHNOL,GRP MST5,LOS ALAMOS,NM 87545
关键词
polymers; constitutive modeling; viscoelasticity; viscoplasticity; strain-rate sensitivity;
D O I
10.1016/S0167-6636(97)00007-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A general methodology for developing three-dimensional. finite deformation, viscoplastic constitutive models for polymeric materials is presented. The development begins with the presentation of a one-dimensional spring and dashpot construction which exhibits behavior typical of polymeric materials, namely strain-rate dependence, stress relaxation, and creep. The one-dimensional construction serves as a starting point for the development of a three-dimensional, finite deformation, viscoplastic constitutive model which also exhibits typical polymeric behavior. Furthermore, the three-dimensional constitutive model may be easily generalized to incorporate an arbitrary number of inelastic processes, representing (inelastic) microstructural deformation mechanisms operating on different time scales. Strain-rate dependence, stress relaxation, and creep phenomena are discussed in detail for a simple version of the constitutive model. Test data for a particular polymer is used to validate the simple model. It is concluded that the methodology provides a flexible approach to modeling polymeric materials over a wide range of loading conditions.
引用
收藏
页码:235 / 253
页数:19
相关论文
共 28 条
[1]   LATENT ENERGY OF DEFORMATION OF BISPHENOL-A POLYCARBONATE [J].
ADAMS, GW ;
FARRIS, RJ .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1988, 26 (02) :433-445
[2]   MECHANICAL-PROPERTIES OF POLYMERS [J].
AKLONIS, JJ .
JOURNAL OF CHEMICAL EDUCATION, 1981, 58 (11) :892-897
[3]   PLASTIC-DEFORMATION IN GLASSY-POLYMERS BY ATOMISTIC AND MESOSCOPIC SIMULATIONS [J].
ARGON, AS ;
BULATOV, VV ;
MOTT, PH ;
SUTER, UW .
JOURNAL OF RHEOLOGY, 1995, 39 (02) :377-399
[4]   THEORY FOR LOW-TEMPERATURE PLASTIC-DEFORMATION OF GLASSY POLYMERS [J].
ARGON, AS .
PHILOSOPHICAL MAGAZINE, 1973, 28 (04) :839-865
[5]  
Bird R. B., 1977, Dynamics of Polymeric Liquids, V1
[6]   CONSTITUTIVE EQUATIONS FOR ELASTIC-VISCOPLASTIC STRAIN-HARDENING MATERIALS [J].
BODNER, SR ;
PARTOM, Y .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1975, 42 (02) :385-389
[7]   LARGE INELASTIC DEFORMATION OF GLASSY-POLYMERS .1. RATE DEPENDENT CONSTITUTIVE MODEL [J].
BOYCE, MC ;
PARKS, DM ;
ARGON, AS .
MECHANICS OF MATERIALS, 1988, 7 (01) :15-33
[8]   FOUNDATIONS OF LINEAR VISCOELASTICITY [J].
COLEMAN, BD ;
NOLL, W .
REVIEWS OF MODERN PHYSICS, 1961, 33 (02) :239-249
[9]   Viscosity, plasticity, and diffusion as examples of absolute reaction rates [J].
Eyring, H .
JOURNAL OF CHEMICAL PHYSICS, 1936, 4 (04) :283-291
[10]  
Ferry D.J., 1980, Viscoelastic Properties of Polymers, V3e