A two-dimensional computational model of a PEMFC with liquid water transport

被引:228
作者
Siegel, NP [1 ]
Ellis, MW [1 ]
Nelson, DJ [1 ]
von Spakovsky, MR [1 ]
机构
[1] Virginia Polytech & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA
关键词
computational model; PEMFC; proton exchange membrane; water transport; agglomerate;
D O I
10.1016/j.jpowsour.2003.09.072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A comprehensive, steady-state, computational model of a proton exchange membrane fuel cell (PEMFC) derived from first principles is presented. The model is two-dimensional and includes the transport of liquid water within the porous electrodes as well as the transport of gaseous species, protons, energy, and water dissolved in the ion conducting polymer. Electrochemical kinetics are modeled with standard rate equations adapted to an agglomerate catalyst layer structure. Some of the physical properties used in constructing the model are determined experimentally for an in-house membrane electrode assembly (MEA) and are presented herein. Experimental results obtained for the MEA are used to validate the computational model. Modeling results are presented that illustrate the importance of the transport of water within the porous sections of the cell and in the polymer regions of the MEA. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 27 条
[1]  
[Anonymous], 1980, SERIES COMPUTATIONAL, DOI [DOI 10.1201/9781482234213, 10.1201/9781482234213]
[2]   Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J].
Baschuk, JJ ;
Li, XH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :181-196
[3]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[4]   Modelling the PEM fuel cell cathode [J].
Broka, K ;
Ekdunge, P .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (03) :281-289
[5]   Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell [J].
Dutta, S ;
Shimpalee, S ;
Van Zee, JW .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (11) :2029-2042
[6]  
Fox R.W., 1992, Introduction to Fluid Mechanics, Vfourth
[7]  
GENEVEY D, INT MECH ENG C EXP I
[8]  
GURAU V, J AICHE, V44, P2410
[9]   Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields [J].
He, WS ;
Yi, JS ;
Nguyen, TV .
AICHE JOURNAL, 2000, 46 (10) :2053-2064
[10]   Investigation of mass-transport limitations in the solid polymer fuel cell cathode - II. Experimental [J].
Ihonen, J ;
Jaouen, F ;
Lindbergh, G ;
Lundblad, A ;
Sundholm, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (04) :A448-A454