A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis

被引:126
作者
Lu, CF [1 ]
Fulda, M [1 ]
Wallis, JG [1 ]
Browse, J [1 ]
机构
[1] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA
关键词
high-throughput; full-length cDNA library; transgenic plants; ricinoleate; castor; Arabidopsis;
D O I
10.1111/j.1365-313X.2005.02636.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
It is desirable to produce high homogeneity of novel fatty acids in oilseeds through genetic engineering to meet the increasing demands of the oleo-chemical industry. However, expression of key enzymes for biosynthesis of industrial fatty acids usually results in low levels of desired fatty acids in transgenic oilseeds. The abundance of derivatized fatty acids in their natural species suggests that additional genes are needed for high production in transgenic plants. We used the model oilseed plant Arabidopsis thaliana expressing a castor fatty acid hydroxylase (FAH12) to identify genes that can boost hydroxy fatty acid accumulation in transgenic seeds. Here we describe a high-throughput approach that, in principle, can allow testing of the entire transcriptome of developing castor seed endosperm by shotgun transforming a full-length cDNA library into an FAH12-expressing Arabidopsis line. The resulting transgenic seeds were screened by high-throughput gas chromatography. We obtained several lines transformed with castor cDNAs that contained increased amounts of hydroxy fatty acids in transgenic Arabidopsis. These cDNAs were then isolated by PCR and retransformed into the FAH12-expressing line, thus confirming their beneficial contributions to hydroxy fatty acid accumulation in transgenic Arabidopsis seeds. Although we describe an approach that is targeted to oilseed engineering, the methods we developed can be applied in many areas of plant biotechnology and functional genomic research.
引用
收藏
页码:847 / 856
页数:10
相关论文
共 32 条
[1]   Use of matrix attachment regions (MARs) to minimize transgene silencing [J].
Allen, GC ;
Spiker, S ;
Thompson, WF .
PLANT MOLECULAR BIOLOGY, 2000, 43 (2-3) :361-376
[2]   RICINOLEIC ACID BIOSYNTHESIS AND TRIACYLGLYCEROL ASSEMBLY IN MICROSOMAL PREPARATIONS FROM DEVELOPING CASTOR-BEAN (RICINUS-COMMUNIS) ENDOSPERM [J].
BAFOR, M ;
SMITH, MA ;
JONSSON, L ;
STOBART, K ;
STYMNE, S .
BIOCHEMICAL JOURNAL, 1991, 280 :507-514
[3]   Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean [J].
Broun, P ;
Somerville, C .
PLANT PHYSIOLOGY, 1997, 113 (03) :933-942
[4]   GLYCEROLIPID SYNTHESIS - BIOCHEMISTRY AND REGULATION [J].
BROWSE, J ;
SOMERVILLE, C .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1991, 42 :467-506
[5]   Biosynthetic origin of conjugated double bonds: Production of fatty acid components of high-value drying oils in transgenic soybean embryos [J].
Cahoon, EB ;
Carlson, TJ ;
Ripp, KG ;
Schweiger, BJ ;
Cook, GA ;
Hall, SE ;
Kinney, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12935-12940
[6]   Progress in plant metabolic engineering [J].
Capell, T ;
Christou, P .
CURRENT OPINION IN BIOTECHNOLOGY, 2004, 15 (02) :148-154
[7]  
Carninci P, 1999, METHOD ENZYMOL, V303, P19
[8]   Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes [J].
Carninci, P ;
Shibata, Y ;
Hayatsu, N ;
Sugahara, Y ;
Shibata, K ;
Itoh, M ;
Konno, H ;
Okazaki, Y ;
Muramatsu, M ;
Hayashizaki, Y .
GENOME RESEARCH, 2000, 10 (10) :1617-1630
[9]   Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA [J].
Carninci, P ;
Nishiyama, Y ;
Westover, A ;
Itoh, M ;
Nagaoka, S ;
Sasaki, N ;
Okazaki, Y ;
Muramatsu, M ;
Hayashizaki, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (02) :520-524
[10]   High-efficiency full-length cDNA cloning by biotinylated CAP trapper [J].
Carninci, P ;
Kvam, C ;
Kitamura, A ;
Ohsumi, T ;
Okazaki, Y ;
Itoh, M ;
Kamiya, M ;
Shibata, K ;
Sasaki, N ;
Izawa, M ;
Muramatsu, M ;
Hayashizaki, Y ;
Schneider, C .
GENOMICS, 1996, 37 (03) :327-336