Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles

被引:790
作者
Dhar, Shanta [1 ]
Gu, Frank X. [2 ,3 ]
Langer, Robert [2 ,3 ,4 ,5 ]
Farokhzad, Omid C. [3 ,6 ]
Lippard, Stephen J. [1 ,4 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] MIT, Harvard Ctr Nanotechnol Excellence, Cambridge, MA 02139 USA
[4] MIT, Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[5] MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[6] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Anesthesiol, Boston, MA 02115 USA
基金
加拿大自然科学与工程研究理事会;
关键词
DNA cross-link; metals in medicine; PSMA; controlled release;
D O I
10.1073/pnas.0809154105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cisplatin is used to treat a variety of tumors, but dose limiting toxicities or intrinsic and acquired resistance limit its application in many types of cancer including prostate. We report a unique strategy to deliver cisplatin to prostate cancer cells by constructing Pt(IV)-encapsulated prostate-specific membrane antigen (PSMA) targeted nanoparticles (NPs) of poly(D,L-lactic-co-glycolic acid) (PLGA)-poly(ethylene glycol) (PEG)-functionalized controlled release polymers. By using PLGA-b-PEG nanoparticles with PSMA targeting aptamers (Apt) on the surface as a vehicle for the platinum(IV) compound c,t,c-[Pt(NH3)(2)(O2CCH2CH2CH2CH2CH3)(2)Cl-2] (1), a lethal dose of cisplatin was delivered specifically to prostate cancer cells. PSMA aptamer targeted delivery of Pt(IV) cargos to PSMA(+) LNCaP prostate cancer cells by endocytosis of the nanoparticle vehicles was demonstrated using fluorescence microscopy by colocalization of green fluorescent labeled cholesterol-encapsulated NPs and early endosome marker EEA-1. The choice of linear hexyl chains in 1 was the result of a systematic study to optimize encapsulation and controlled release from the polymer without compromising either feature. Release of cisplatin from the polymeric nanoparticles after reduction of 1 and formation of cisplatin 1,2-intrastrand d(GpG) cross-links on nuclear DNA was confirmed by using a monoclonal antibody for the adduct. A comparison between the cytotoxic activities of Pt(IV)-encapsulated PLGA-b-PEG NPs with the PSMA aptamer on the surface (Pt-NP-Apt), cisplatin, and the nontargeted Pt(IV)-encapsulated NPs (Pt-NP) against human prostate PSMA-overexpressing LNCaP and PSMA(-)PC3 cancer cells revealed significant differences. The effectiveness of PSMA targeted Pt-NP-Apt nanoparticles against the PSMA(+) LNCaP cells is approximately an order of magnitude greater than that of free cisplatin.
引用
收藏
页码:17356 / 17361
页数:6
相关论文
共 47 条
[1]   Factors affecting the clearance and biodistribution of polymeric nanoparticles [J].
Alexis, Frank ;
Pridgen, Eric ;
Molnar, Linda K. ;
Farokhzad, Omid C. .
MOLECULAR PHARMACEUTICS, 2008, 5 (04) :505-515
[2]  
[Anonymous], CANC DRUG RESISTANCE
[3]   PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in Vivo drug residence in blood properties [J].
Avgoustakis, K ;
Beletsi, A ;
Panagi, Z ;
Klepetsanis, P ;
Karydas, AG ;
Ithakissios, DS .
JOURNAL OF CONTROLLED RELEASE, 2002, 79 (1-3) :123-135
[4]   Synthesis, characterization, and cytotoxicity of a series of estrogen-tethered platinum(IV) complexes [J].
Barnes, KR ;
Kutikov, A ;
Lippard, SJ .
CHEMISTRY & BIOLOGY, 2004, 11 (04) :557-564
[5]   Nanoparticle and targeted systems for cancer therapy [J].
Brannon-Peppas, L ;
Blanchette, JO .
ADVANCED DRUG DELIVERY REVIEWS, 2004, 56 (11) :1649-1659
[6]   Nanoparticles in cancer therapy and diagnosis [J].
Brigger, I ;
Dubernet, C ;
Couvreur, P .
ADVANCED DRUG DELIVERY REVIEWS, 2002, 54 (05) :631-651
[7]  
Chang SS, 1999, CANCER RES, V59, P3192
[8]   Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics [J].
Chorny, M ;
Fishbein, I ;
Danenberg, HD ;
Golomb, G .
JOURNAL OF CONTROLLED RELEASE, 2002, 83 (03) :389-400
[9]   Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device [J].
Dhar, Shanta ;
Liu, Zhuang ;
Thomale, Juergen ;
Dai, Hongjie ;
Lippard, Stephen J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (34) :11467-11476
[10]  
Dhara S.C., 1970, INDIAN J CHEM, V8, P193