Leishmania donovani promastigotes evade the induction of a proinflammatory response during their invasion of naive macrophages. However,,their entry into IFN-gamma-primed macrophages is accompanied by the secretion of nitric oxide (NO) and proinflammatory cytokines. In the present study, we addressed the hypothesis that priming with IFN-gamma induces the expression of a receptor that enables mouse macrophages to recognize L. donovani promastigotes. We observed that in IFN-gamma-primed macrophages, L. donovani promastigotes stimulated Interleukin-1 receptor-associated kinase-1 (IRAK-1) activity. We next showed that Toll-like receptor (TLR) 3 is barely detectable in naive macrophages but is expressed in IFN-gamma-treated macrophages. Silencing of TLR3, TLR2, IRAK-1 and myeloid differentiation factor 88 (MyD88) expression by RNA interference revealed that both TLR are involved in the secretion of NO and TNF-alpha induced by L. donovani promastigotes. Using L. donovani mutants, we showed that TLR2-mediated responses are dependent on Gal beta 1,4Man alpha-PO4-containing phosphoglycans, whereas TLR3-mediated responses are independent of these glycoconjugates. Furthermore, our data indicate a participation of TLR2 and TLR3 in the phagocytosis of L. donovani promastigotes and a role for TLR3 in the leishmanicidal activity of the IFN-gamma-primed macrophages. Collectively, our data are consistent with a model where recognition of L. donovani promastigotes depends on the macrophage activation status and requires the expression of TLR3.