New Gene Evolution: Little Did We Know

被引:204
作者
Long, Manyuan [1 ,2 ]
VanKuren, Nicholas W. [1 ,2 ]
Chen, Sidi [3 ,4 ]
Vibranovski, Maria D. [5 ]
机构
[1] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA
[2] Univ Chicago, Comm Genet Genom & Syst Biol, Chicago, IL 60637 USA
[3] MIT, Dept Biol, Cambridge, MA 02139 USA
[4] MIT, Robert Koch Inst, Cambridge, MA 02139 USA
[5] Univ Sao Paulo, Inst Biociencias, Dept Genet & Biol Evolut, BR-05508 Sao Paulo, Brazil
来源
ANNUAL REVIEW OF GENETICS, VOL 47 | 2013年 / 47卷
基金
美国国家科学基金会;
关键词
evolutionary patterns; evolutionary rates; phenotypic evolution; brain evolution; sex dimorphism; gene networks; COPY-NUMBER POLYMORPHISM; ALTERNATIVE SPLICING PATTERNS; SEX-CHROMOSOME EVOLUTION; MEIOTIC DRIVE SYSTEM; GENOME-WIDE ANALYSIS; SPERM-SPECIFIC GENE; DE-NOVO; TRANSPOSABLE ELEMENTS; CHIMERIC GENE; X-CHROMOSOME;
D O I
10.1146/annurev-genet-111212-133301
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and how they evolve to be critical components of the genetic systems that determine the biological diversity of life. Two decades of effort have shed light on the process of new gene origination and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular, and phenotypic functions.
引用
收藏
页码:307 / 333
页数:27
相关论文
共 175 条
  • [1] Promoter directionality is controlled by U1 snRNP and polyadenylation signals
    Almada, Albert E.
    Wu, Xuebing
    Kriz, Andrea J.
    Burge, Christopher B.
    Sharp, Phillip A.
    [J]. NATURE, 2013, 499 (7458) : 360 - U141
  • [2] Origination of an X-linked testes chimeric gene by illegitimate recombination in Drosophila
    Arguello, J. Roman
    Chen, Ying
    Yang, Shuang
    Wang, Wen
    Long, Manyuan
    [J]. PLOS GENETICS, 2006, 2 (05): : 745 - 754
  • [3] Dosage Compensation and Demasculinization of X Chromosomes in Drosophila
    Bachtrog, Doris
    Toda, Nicholas R. T.
    Lockton, Steven
    [J]. CURRENT BIOLOGY, 2010, 20 (16) : 1476 - 1481
  • [4] Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila
    Bai, Yongsheng
    Casola, Claudio
    Feschotte, Cedric
    Betran, Esther
    [J]. GENOME BIOLOGY, 2007, 8 (01)
  • [5] Role of Testis-Specific Gene Expression in Sex-Chromosome Evolution of Anopheles gambiae
    Baker, Dean A.
    Russell, Steven
    [J]. GENETICS, 2011, 189 (03) : 1117 - U615
  • [6] Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba Drosophila erecta clade
    Begun, David J.
    Lindfors, Heather A.
    Kern, Andrew D.
    Jones, Corbin D.
    [J]. GENETICS, 2007, 176 (02) : 1131 - 1137
  • [7] Evolution of microRNA diversity and regulation in animals
    Berezikov, Eugene
    [J]. NATURE REVIEWS GENETICS, 2011, 12 (12) : 846 - 860
  • [8] Widespread horizontal transfer of mitochondrial genes in flowering plants
    Bergthorsson, U
    Adams, KL
    Thomason, B
    Palmer, JD
    [J]. NATURE, 2003, 424 (6945) : 197 - 201
  • [9] Ohno's dilemma: Evolution of new genes under continuous selection
    Bergthorsson, Ulfar
    Andersson, Dan I.
    Roth, John R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (43) : 17004 - 17009
  • [10] Betrán E, 2003, GENETICS, V164, P977