CinemaScreen recommender agent: Combining collaborative and content-based filtering

被引:167
作者
Salter, J [1 ]
Antonopoulos, N [1 ]
机构
[1] Univ Surrey, Dept Comp, Guildford GU2 5XH, Surrey, England
关键词
D O I
10.1109/MIS.2006.4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Directing users to relevant content is increasingly important in today's society with its ever-growing information mass. The recommender systems have become a significant component of e-commerce systems and an interesting application domain for intelligent agent technology. In collaborative filtering, a recommender agent matches a user to other users who have expressed similar preference in the past. A film recommender agent expands and fine-tunes collaborative-filtering results according to filtered content elements.
引用
收藏
页码:35 / 41
页数:7
相关论文
共 11 条
[1]   Fab: Content-based, collaborative recommendation [J].
Balabanovic, M ;
Shoham, Y .
COMMUNICATIONS OF THE ACM, 1997, 40 (03) :66-72
[2]  
Breese J. S., 1998, UAI, P43, DOI 10.5555/2074094.2074100
[3]  
CRAWSHAW J, 1994, CONCISE COURSE LEVEL, P658
[4]   Evaluating collaborative filtering recommender systems [J].
Herlocker, JL ;
Konstan, JA ;
Terveen, K ;
Riedl, JT .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) :5-53
[5]  
HUANG Z, 2002, P 2 ACM IEEE CS JOIN, P65
[6]   A framework for collaborative, content-based and demographic filtering [J].
Pazzani, MJ .
ARTIFICIAL INTELLIGENCE REVIEW, 1999, 13 (5-6) :393-408
[7]  
Resnick Paul, 1994, P ACM C COMP SUPP CO, P175, DOI DOI 10.1145/192844.192905
[8]  
Schein A. I., 2002, Proceedings of SIGIR 2002. Twenty-Fifth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P253, DOI 10.1145/564376.564421
[9]  
Shardanand U., 1995, Human Factors in Computing Systems. CHI'95 Conference Proceedings, P210, DOI 10.1145/223904.223931
[10]  
SMITH B, 2001, AI MAGAZINE SUM, P89