Nonvalidity of the telegrapher's diffusion equation in two and three dimensions for crystalline solids

被引:38
作者
Godoy, S
GarciaColin, LS
机构
[1] Departamento de Física, Universidad Autónoma Metropolitana, México, 09340, Iztapalapa
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 03期
关键词
D O I
10.1103/PhysRevE.55.2127
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We use a classical analog of two-dimensional (2D) and 3D quantum S-matrix scattering theory to study classical mesoscopic diffusion in isotropic, crystalline, solids; The individual collisions include transmission, reflection, and lateral scattering probabilities. The resulting stochastic process is a second-order Markov process in phase space, which is known in the literature as 2D (3D) persistent random walk. In striking contrast with the 1D case, in the continuum limit, the 2D and 3D total densities do not satisfy the telegrapher's diffusion equation. We explain this fact deriving the anomalous Maxwell-Cattaneo equation in the case of discrete diffusion processes. We find that inertial memory, giving the forward scattering a preferential direction, breaks the x-y symmetry.
引用
收藏
页码:2127 / 2131
页数:5
相关论文
共 13 条
[1]   HYPERBOLIC TYPE TRANSPORT-EQUATIONS [J].
GARCIACOLIN, LS ;
OLIVARESROBLES, MA .
PHYSICA A, 1995, 220 (1-2) :165-172
[2]   A QUANTUM RANDOM-WALK MODEL FOR TUNNELING DIFFUSION IN A 1D LATTICE - A QUANTUM CORRECTION TO FICK LAW [J].
GODOY, S ;
FUJITA, S .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (07) :5148-5154
[3]   From the quantum random walk to classical mesoscopic diffusion in crystalline solids [J].
Godoy, S ;
GarciaColin, LS .
PHYSICAL REVIEW E, 1996, 53 (06) :5779-5785
[4]   ONE-DIMENSIONAL QUANTUM RANDOM-WALK FOR FERMIONS AND BOSONS [J].
GODOY, S ;
ESPINOSA, F .
PHYSICAL REVIEW E, 1995, 52 (04) :3381-3389
[6]   HEAT WAVES [J].
JOSEPH, DD ;
PREZIOSI, L .
REVIEWS OF MODERN PHYSICS, 1989, 61 (01) :41-73
[7]   THE CONTINUUM-LIMIT OF A 2-DIMENSIONAL PERSISTENT RANDOM-WALK [J].
MASOLIVER, J ;
PORRA, JM ;
WEISS, GH .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1992, 182 (04) :593-598
[8]   A CONTINUOUS-TIME GENERALIZATION OF THE PERSISTENT RANDOM-WALK [J].
MASOLIVER, J ;
LINDENBERG, K ;
WEISS, GH .
PHYSICA A, 1989, 157 (02) :891-898
[9]   SOME 2-DIMENSIONAL AND 3-DIMENSIONAL PERSISTENT RANDOM-WALKS [J].
MASOLIVER, J ;
PORRA, JM ;
WEISS, GH .
PHYSICA A, 1993, 193 (3-4) :469-482
[10]  
MAXWELL JC, 1965, COLLECTED PAPERS JC