Thermal cycling effect on mechanical integrity of inverted polymer solar cells

被引:23
作者
Balcaen, Veerle [1 ]
Rolston, Nicholas [2 ]
Dupont, Stephanie R. [1 ]
Voroshazi, Eszter [3 ]
Dauskardt, Reinhold H. [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] IMEC VZW, Leuven, Belgium
基金
美国国家科学基金会;
关键词
Thermal cycling; Effective annealing; Reliability; Adhesive and cohesive failure; Meandering fracture path; SELF-ORGANIZATION; MORPHOLOGY; ADHESION; KINETICS; MODEL;
D O I
10.1016/j.solmat.2015.07.019
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The role of thermal cycling of inverted P3HT:PCBM-based polymer solar cells is reported. We found that thermal cycling between -40 degrees C and 85 degrees C up to 200 cycles had no significant effect on solar cell efficiency and mechanical integrity. On the contrary, the solar cells exhibited a slight increase in fracture resistance, similar to that reported for a post-electrode deposition thermal annealing at 85 degrees C. G(c) increased from 2.6 J/m(2) for our control solar cells to a sustained maximum value of 4.0 J/m(2) after 25 thermal cycles. Surface analysis on the fractured samples revealed the formation of an intermixed layer between P3HT:PCBM and PEDOT:PSS, causing the debond path to change from adhesive between P3HT:PCBM and PEDOT:PSS to meandering through the intermixed layer. A kinetic analysis was used to model the effect of thermal cycling on the G(c) values of polymer cells. The model revealed for cycling between -40 degrees C and 85 degrees C that 25 cycles are needed to reach the maximum G(c), which is consistent with our experimental results. After 5 thermal cycles, the effects of heating and cooling have little impact on the mechanical stability of polymer solar cells. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:418 / 423
页数:6
相关论文
共 28 条
[1]  
[Anonymous], P 38 IEEE PHOT SPEC
[2]  
[Anonymous], J APPL PHYS
[3]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[4]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Brabec, Christoph J. ;
Gowrisanker, Srinivas ;
Halls, Jonathan J. M. ;
Laird, Darin ;
Jia, Shijun ;
Williams, Shawn P. .
ADVANCED MATERIALS, 2010, 22 (34) :3839-3856
[5]   Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene) -: art. no. 064203 [J].
Brown, PJ ;
Thomas, DS ;
Köhler, A ;
Wilson, JS ;
Kim, JS ;
Ramsdale, CM ;
Sirringhaus, H ;
Friend, RH .
PHYSICAL REVIEW B, 2003, 67 (06)
[6]   Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends [J].
Campoy-Quiles, Mariano ;
Ferenczi, Toby ;
Agostinelli, Tiziano ;
Etchegoin, Pablo G. ;
Kim, Youngkyoo ;
Anthopoulos, Thomas D. ;
Stavrinou, Paul N. ;
Bradley, Donal D. C. ;
Nelson, Jenny .
NATURE MATERIALS, 2008, 7 (02) :158-164
[7]   P3HT/PCBM Bulk Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology [J].
Chen, Dian ;
Nakahara, Atsuhiro ;
Wei, Dongguang ;
Nordlund, Dennis ;
Russell, Thomas P. .
NANO LETTERS, 2011, 11 (02) :561-567
[8]   Recent Progress in Polymer Solar Cells: Manipulation of Polymer: Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells [J].
Chen, Li-Min ;
Hong, Ziruo ;
Li, Gang ;
Yang, Yang .
ADVANCED MATERIALS, 2009, 21 (14-15) :1434-1449
[9]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Dennler, Gilles ;
Scharber, Markus C. ;
Brabec, Christoph J. .
ADVANCED MATERIALS, 2009, 21 (13) :1323-1338
[10]   Controlling Interdiffusion, Interfacial Composition, and Adhesion in Polymer Solar Cells [J].
Dupont, Stephanie R. ;
Voroshazi, Eszter ;
Nordlund, Dennis ;
Vandewal, Koen ;
Dauskardt, Reinhold H. .
ADVANCED MATERIALS INTERFACES, 2014, 1 (07)