1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries

被引:212
作者
Chaudhari, Sudeshna [1 ]
Srinivasan, Madhavi [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Block N4-1,50 Nanyang Ave, Singapore 639798, Singapore
[2] NTU ERI N, Energy Res Inst, Singapore 637553, Singapore
基金
新加坡国家研究基金会;
关键词
ELECTROCHEMICAL PERFORMANCE; GROWTH-MECHANISM; PARTICLE-SIZE; BINDER-FREE; GAS SENSOR; STORAGE; IRON; CARBON; OXIDES; INTERCALATION;
D O I
10.1039/c2jm32989a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hollow-structured alpha-Fe2O3 nanofibers were successfully synthesized by a simple electrospinning technique using iron acetylacetonate (Fe(acac(3))) and polyvinylpyrrolidone (PVP) precursor. Fe (acac)(3)-PVP composite fibers were calcined at high temperature to form an interconnected ID hollow-structure of alpha-Fe2O3 nanofibers. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) were employed to characterize alpha-Fe2O3 a hollow fibers. Based on the characterization results, a formation mechanism for electrospun alpha-Fe2O3 hollow fibers is proposed. Electrochemical measurements showed that the hollow-structure of alpha-Fe2O3 nanofibers played an important role in improving the electrode cycle stability and rate capability in lithium ion batteries. The alpha-Fe2O3 hollow fiber anodes exhibit a high reversible capacity of 1293 mA h g(-1) at a current density of 60 mA g(-1) (0.06 C) with excellent cycle stability and rate capability. Based on our study this high performance is attributed to the interconnected hollow-structure of large aspect ratio alpha-Fe2O3 cc nanofibers, which makes them a potential candidate for lithium ion batteries.
引用
收藏
页码:23049 / 23056
页数:8
相关论文
共 64 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]  
BESENHARD JO, 1999, HDB BATTERY MAT, pCH4
[5]   Probing the interaction of poly( vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR [J].
Borodko, Yuri ;
Habas, Susan E. ;
Koebel, Matthias ;
Yang, Peidong ;
Frei, Heinz ;
Somorjai, Gabor A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (46) :23052-23059
[6]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[7]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[8]   Formation mechanism of Fe2O3 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic, electrochemical properties [J].
Cheng, Yongliang ;
Zou, Binglin ;
Wang, Chunjie ;
Liu, Yangjia ;
Fan, Xizhi ;
Zhu, Ling ;
Wang, Ying ;
Ma, Hongmei ;
Cao, Xueqiang .
CRYSTENGCOMM, 2011, 13 (08) :2863-2870
[9]   Direct fabrication of cerium oxide hollow nanofibers by electrospinning [J].
Cui Qizheng ;
Dong Xiangting ;
Wang Jinxian ;
Li Mei .
JOURNAL OF RARE EARTHS, 2008, 26 (05) :664-669
[10]  
Débart A, 2001, J ELECTROCHEM SOC, V148, pA1266, DOI 10.1149/1.1409971