On the solution of fractional evolution equations

被引:24
作者
Kilbas, AA [1 ]
Pierantozzi, T
Trujillo, JJ
Vázquez, L
机构
[1] Belarusian State Univ, Dept Math & Mech, Minsk 220050, BELARUS
[2] Univ Complutense, Fac Informat, Dept Matemat Aplicada, E-28040 Madrid, Spain
[3] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Spain
[4] CSIC, INTA, Ctr Astrobiol, Madrid 28850, Spain
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 09期
关键词
D O I
10.1088/0305-4470/37/9/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is devoted to the solution of the bi-fractional differential equation ((C)D(t)(alpha)u)(t, x) = lambda((L)D(x)(beta)u) (t, x) (t > 0, -infinity < x < infinity) for real 0 < alpha less than or equal to 1, beta > 0 and lambda not equal 0, with the initial conditions lim(x-->+/-infinity) u(t, x) = 0 u(0+, x) = g(x). Here ((C)D(t)(alpha)u) (t, x) is the partial derivative coinciding with the Caputo fractional derivative for 0 < alpha < 1 and with the usual derivative for alpha = 1, while ((L)D(x)(beta)u) (t, x)) is the Liouville partial fractional derivative ((L)D(t)(beta)u)(t,x)) of order beta > 0. The Laplace and Fourier transforms are applied to solve the above problem in closed form. The fundamental solution of these problems is established and its moments are calculated. The special case alpha = 1/2 and P = 1 is presented, and its application is given to obtain the Dirac-type decomposition for the ordinary diffusion equation.
引用
收藏
页码:3271 / 3283
页数:13
相关论文
共 21 条
[1]  
Brychkov Yu. A., 1989, Integral transforms of generalized functions
[2]  
DITHIN VA, 1965, INTEGRAL TRANSFORMS
[3]  
ERDELYI A, 1953, HIGHER TANSCENDENTAL, V1
[4]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[5]   LANGEVIN-EQUATIONS FOR CONTINUOUS-TIME LEVY FLIGHTS [J].
FOGEDBY, HC .
PHYSICAL REVIEW E, 1994, 50 (02) :1657-1660
[6]  
Gelfand IM, 1964, GEN FUNCTIONS, V1
[7]  
MAINARDI F, 1993, SER ADV MATH APPL SC, V23, P246
[8]   Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation [J].
Metzler, R ;
Nonnenmacher, TF .
CHEMICAL PHYSICS, 2002, 284 (1-2) :67-90
[9]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[10]   RANDOM WALKS IN MULTIDIMENSIONAL SPACES, ESPECIALLY ON PERIODIC LATTICES [J].
MONTROLL, EW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1956, 4 (04) :241-260