Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli

被引:50
作者
Martinez, A
York, SW
Yomano, LP
Pineda, VL
Davis, FC
Shelton, JC
Ingram, LO
机构
[1] Univ Florida, Inst Food & Agr Sci, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA
[2] Univ Nacl Autonoma Mexico, Inst Biotechnol, Cuernavaca 62250, Morelos, Mexico
关键词
D O I
10.1021/bp990103p
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Previous studies have shown an unexpectedly high nutrient requirement for efficient ethanol production by ethanologenic recombinants of Escherichia coli B such as LY01 which contain chromosomally integrated Zymomonas mobilis genes (pdc,adhB) encoding the ethanol pathway. The basis for this requirement has been identified as a media-dependent effect on the expression of the Z. mobilis genes rather than a nutritional limitation. Ethanol production was substantially increased without additional nutrients simply by increasing the level of pyruvate decarboxylase activity. This was accomplished by adding a multicopy plasmid containing pdc alone (but not adhB alone) to strain LY01, and by adding multicopy plasmids which express pde and adhB from strong promoters. New strong promoters were isolated from random fragments of Z. mobilis DNA and characterized but were not used to construct integrated biocatalysts. These promoters contained regions resembling recognition sites for 3 different E. coli sigma factors: sigma(70), sigma(38), and sigma(28). The most effective plasmid-based promoters for fermentation were recognized by multiple sigma factors, expressed both pde and adhB at high levels, and produced ethanol efficiently while allowing up to 80% reduction in complex nutrients as compared to LY01. The ability to utilize multiple sigma factors may be advantageous to maintain the high levels of PDC and ADH needed for efficient ethanol production throughout batch fermentation. From this work, we propose that the activation of biosynthetic genes in nutrient-poor media creates a biosynthetic burden that reduces the expression of chromosomal pdc and adhB by competing for transcriptional and translational machinery. This reduced expression can be viewed as analogous to the effect of plasmids (plasmid burden) on the expression of native chromosomal genes.
引用
收藏
页码:891 / 897
页数:7
相关论文
共 38 条
[1]   EFFICIENT ETHANOL-PRODUCTION FROM GLUCOSE, LACTOSE, AND XYLOSE BY RECOMBINANT ESCHERICHIA-COLI [J].
ALTERTHUM, F ;
INGRAM, LO .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1989, 55 (08) :1943-1948
[2]   Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11 [J].
Asghari, A ;
Bothast, RJ ;
Doran, JB ;
Ingram, LO .
JOURNAL OF INDUSTRIAL MICROBIOLOGY, 1996, 16 (01) :42-47
[3]  
Atlas R. M., 1993, HDB MICROBIOLOGICAL
[4]   PARAMETRIC STUDIES OF ETHANOL-PRODUCTION FROM XYLOSE AND OTHER SUGARS BY RECOMBINANT ESCHERICHIA-COLI [J].
BEALL, DS ;
OHTA, K ;
INGRAM, LO .
BIOTECHNOLOGY AND BIOENGINEERING, 1991, 38 (03) :296-303
[5]   GenBank [J].
Benson, DA ;
Boguski, MS ;
Lipman, DJ ;
Ostell, J ;
Ouellette, BFF .
NUCLEIC ACIDS RESEARCH, 1998, 26 (01) :1-7
[6]   CLONING AND SEQUENCING OF THE ALCOHOL DEHYDROGENASE-II GENE FROM ZYMOMONAS-MOBILIS [J].
CONWAY, T ;
SEWELL, GW ;
OSMAN, YA ;
INGRAM, LO .
JOURNAL OF BACTERIOLOGY, 1987, 169 (06) :2591-2597
[7]   PROMOTER AND NUCLEOTIDE-SEQUENCES OF THE ZYMOMONAS-MOBILIS PYRUVATE DECARBOXYLASE [J].
CONWAY, T ;
OSMAN, YA ;
KONNAN, JI ;
HOFFMANN, EM ;
INGRAM, LO .
JOURNAL OF BACTERIOLOGY, 1987, 169 (03) :949-954
[8]   A COMPREHENSIVE SET OF SEQUENCE-ANALYSIS PROGRAMS FOR THE VAX [J].
DEVEREUX, J ;
HAEBERLI, P ;
SMITHIES, O .
NUCLEIC ACIDS RESEARCH, 1984, 12 (01) :387-395
[9]   PROMOTER-7 OF THE ESCHERICHIA-COLI PFL OPERON IS A MAJOR DETERMINANT IN THE ANAEROBIC REGULATION OF EXPRESSION BY ARCA [J].
DRAPAL, N ;
SAWERS, G .
JOURNAL OF BACTERIOLOGY, 1995, 177 (18) :5338-5341
[10]   STRUCTURE AND FUNCTION OF BACTERIAL SIGMA FACTORS [J].
HELMANN, JD ;
CHAMBERLIN, MJ .
ANNUAL REVIEW OF BIOCHEMISTRY, 1988, 57 :839-872