Analysis of RNA polymerase-promoter complex formation

被引:51
作者
Ross, Wilma [1 ]
Gourse, Richard L. [1 ]
机构
[1] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
基金
美国国家卫生研究院;
关键词
Promoter; RNA polymerase; Promoter identification; Primer extension; Promoter-reporter fusion; In vitro transcription; RNA polymerase footprinting; Association rate; Dissociation rate; ESCHERICHIA-COLI K-12; FACTOR-INDEPENDENT ACTIVATION; LAMBDA-PR PROMOTER; LAC UV5 PROMOTER; 5' END CDNA; TRANSCRIPTION INITIATION; IN-VITRO; RRNB P1; DNA; PROTEIN;
D O I
10.1016/j.ymeth.2008.10.018
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Bacterial promoter identification and characterization is not as straightforward as one might presume. Promoters vary widely in their similarity to the consensus recognition element sequences, in their activities, and in their utilization of transcription factors, and multiple approaches often must be used to provide a framework for understanding promoter regulation. Characterization of RNA polymerase-promoter complex formation in the absence of additional regulatory factors (basal promoter function) can provide a basis for understanding the steps in transcription initiation that are ultimately targeted by nutritional or environmental factors. Promoters can be localized using genetic approaches in vivo, but the detailed properties of the RNAP-promoter complex are studied most productively in vitro. We first describe approaches for identification of bacterial promoters and transcription start sites in vivo, including promoter-reporter fusions and primer-extension. We then describe a number of methods for characterization of RNAP-promoter complexes in vitro, including in vitro transcription, gel mobility shift assays, footprinting, and filter binding. Utilization of these methods can result in determination of not only basal promoter strength but also the rates of transcription initiation complex formation and decay. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:13 / 24
页数:12
相关论文
共 83 条
[1]   TOPOLOGICAL UNWINDING OF STRONG AND WEAK PROMOTERS BY RNA-POLYMERASE - A COMPARISON BETWEEN THE LAC WILD-TYPE AND THE UV5 SITES OF ESCHERICHIA-COLI [J].
AMOUYAL, M ;
BUC, H .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 195 (04) :795-808
[2]   Mechanism of regulation of transcription initiation by ppGpp.: I.: Effects of ppGpp on transcription initiation in vivo and in vitro [J].
Barker, MM ;
Gaal, T ;
Josaitis, CA ;
Gourse, RL .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 305 (04) :673-688
[3]   Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP [J].
Barker, MM ;
Gaal, T ;
Gourse, RL .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 305 (04) :689-702
[4]   RNA polymerase mutants that destabilize RNA polymerase-promoter complexes alter NTP-sensing by rrn P1 promoters [J].
Bartlett, MS ;
Gaal, T ;
Ross, W ;
Gourse, RL .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 279 (02) :331-345
[5]   Sensitive detection of bacterial transcription initiation sites and differentiation from RNA processing sites in the pheromone-induced plasmid transfer system of Enterococcus faecalis [J].
Bensing, BA ;
Meyer, BJ ;
Dunny, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :7794-7799
[6]  
BORUKHOV S, 1993, J BIOL CHEM, V268, P23477
[7]   KINETICS OF OPEN COMPLEX-FORMATION BETWEEN ESCHERICHIA-COLI RNA-POLYMERASE AND THE LAC UV5 PROMOTER - EVIDENCE FOR A SEQUENTIAL MECHANISM INVOLVING 3 STEPS [J].
BUC, H ;
MCCLURE, WR .
BIOCHEMISTRY, 1985, 24 (11) :2712-2723
[8]   PROCEDURE FOR RAPID, LARGE-SCALE PURIFICATION OF ESCHERICHIA-COLI DNA-DEPENDENT RNA-POLYMERASE INVOLVING POLYMIN-P PRECIPITATION AND DNA-CELLULOSE CHROMATOGRAPHY [J].
BURGESS, RR ;
JENDRISAK, JJ .
BIOCHEMISTRY, 1975, 14 (21) :4634-4638
[9]   Strand opening-deficient Escherichia coli RNA polymerase facilitates investigation of closed complexes with promoter DNA -: Effects of DNA sequence and temperature [J].
Cook, Victoria M. ;
deHaseth, Pieter L. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (29) :21319-21326
[10]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645