A heuristic for the maximum independent set problem based on optimization of a quadratic over a sphere

被引:31
作者
Busygin, S [1 ]
Butenko, S
Pardalos, PM
机构
[1] Contentsoft AG, Munich, Germany
[2] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA
关键词
maximum independent set; continuous approach; combinatorial optimization;
D O I
10.1023/A:1014899909753
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For a given graph the maximum independent set problem is to find a maximum subset of vertices no two of which are adjacent. We propose a heuristic for the maximum independent set problem which utilizes classical results for the problem of optimization of a quadratic function over a sphere. The efficiency of the approach is confirmed by results of numerical experiments on DIMACS benchmarks.
引用
收藏
页码:287 / 297
页数:11
相关论文
共 22 条
[1]  
ABELLO J, 2001, J GLOBAL OPTIMIZATIO, V21
[2]  
Abello J., 1999, DIMACS SERIES DISCRE, P119, DOI DOI 10.1007/3-540-68530-8_1
[3]  
AVONDOBODENO G, 1962, EC APPL THEORY GRAPH
[4]   FINDING A MAXIMUM CLIQUE IN AN ARBITRARY GRAPH [J].
BALAS, E ;
YU, CS .
SIAM JOURNAL ON COMPUTING, 1986, 15 (04) :1054-1068
[5]  
Berge C., 1962, THEORY GRAPHS ITS AP
[6]  
Bomze IM, 1999, Handbook of Combinatorial Optimization, P1, DOI DOI 10.1007/978-1-4757-3023-4_1
[7]  
BUSYGIN S, 2001, QUALEX 2 0 RELEASE N
[8]  
DEANGELIS PL, IN PRESS J GLOBAL OP
[9]  
Deo N., 1974, GRAPH THEORY APPL EN, V1st
[10]   ON STATIONARY VALUES OF A 2ND-DEGREE POLYNOMIAL ON UNIT SPHERE [J].
FORSYTHE, GE ;
GOLUB, GH .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1965, 13 (04) :1050-&