The atomic-scale finite element method

被引:236
作者
Liu, B
Huang, Y
Jiang, H
Qu, S
Hwang, KC
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA
[2] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
atomic scale; finite element rnethod; order-N; multiscale computation;
D O I
10.1016/j.cma.2003.12.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The multiscale simulation is important to the development of nanotechnology and to the study of materials and systems across multiple length scales. In order to develop an efficient and accurate multiscale computation method within a unified theoretical framework, we propose an order-N atomic-scale finite element method (AFEM). It is as accurate as molecular mechanics simulations, but is much faster than the widely used order-N-2 conjugate gradient method. The combination of AFEM and continuum finite element method provides a seamless multiscale computation method suitable for large scale static problems. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1849 / 1864
页数:16
相关论文
共 32 条
[1]   Simulating materials failure by using up to one billion atoms and the world's fastest computer: Work-hardening [J].
Abraham, FF ;
Walkup, R ;
Gao, HJ ;
Duchaineau, M ;
De la Rubia, TD ;
Seager, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :5783-5787
[2]   Simulating materials failure by using up to one billion atoms and the world's fastest computer: Brittle fracture [J].
Abraham, FF ;
Walkup, R ;
Gao, HJ ;
Duchaineau, M ;
De la Rubia, TD ;
Seager, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :5777-5782
[3]   An atomistic-based finite deformation membrane for single layer crystalline films [J].
Arroyo, M ;
Belytschko, T .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2002, 50 (09) :1941-1977
[4]  
Born M., 1954, DYNAMICAL THEORY CRY
[5]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[6]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[7]   Dynamics of an inhomogeneously coarse grained multiscale system [J].
Curtarolo, S ;
Ceder, G .
PHYSICAL REVIEW LETTERS, 2002, 88 (25) :4
[8]   Atomistic/continuum coupling in computational materials science [J].
Curtin, WA ;
Miller, RE .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2003, 11 (03) :R33-R68
[9]   Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds [J].
Gao, HJ ;
Klein, P .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (02) :187-218
[10]   Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential [J].
Girifalco, LA ;
Hodak, M ;
Lee, RS .
PHYSICAL REVIEW B, 2000, 62 (19) :13104-13110