Galaxy types in the Sloan Digital Sky Survey using supervised artificial neural networks

被引:114
作者
Ball, NM [1 ]
Loveday, J
Fukugita, M
Nakamura, O
Okamura, S
Brinkmann, J
Brunner, RJ
机构
[1] Univ Sussex, Ctr Astron, Brighton BN1 9QJ, E Sussex, England
[2] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan
[3] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[4] Univ Tokyo, Sch Sci, Dept Astron, Tokyo 1130033, Japan
[5] Univ Tokyo, Sch Sci, Res Ctr Early Universe, Tokyo 1130033, Japan
[6] Apache Point Observ, Sunspot, NM 88349 USA
[7] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
关键词
methods : data analysis; methods : statistical; galaxies : fundamental parameters; galaxies : photometry; galaxies : statistics;
D O I
10.1111/j.1365-2966.2004.07429.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Supervised artificial neural networks are used to predict useful properties of galaxies in the Sloan Digital Sky Survey, in this instance morphological classifications, spectral types and redshifts. By giving the trained networks unseen data, it is found that correlations between predicted and actual properties are around 0.9 with rms errors of order ten per cent. Thus, given a representative training set, these properties may be reliably estimated for galaxies in the survey for which there are no spectra and without human intervention.
引用
收藏
页码:1038 / 1046
页数:9
相关论文
共 59 条
  • [1] The first data release of the Sloan Digital Sky Survey
    Abazajian, K
    Adelman-McCarthy, JK
    Agüeros, MA
    Allam, SS
    Anderson, SF
    Annis, J
    Bahcall, NA
    Baldry, IK
    Bastian, S
    Berlind, A
    Bernardi, M
    Blanton, MR
    Blythe, N
    Bochanski, JJ
    Boroski, WN
    Brewington, H
    Briggs, JW
    Brinkmann, J
    Brunner, RJ
    Budavári, T
    Carey, LN
    Carr, MA
    Castander, FJ
    Chiu, K
    Collinge, MJ
    Connolly, AJ
    Covey, KR
    Csabai, I
    Dalcanton, JJ
    Dodelson, S
    Doi, M
    Dong, F
    Eisenstein, DJ
    Evans, ML
    Fan, XH
    Feldman, PD
    Finkbeiner, DP
    Friedman, SD
    Frieman, JA
    Fukugita, M
    Gal, RR
    Gillespie, B
    Glazebrook, K
    Gonzalez, CF
    Gray, J
    Grebel, EK
    Grodnicki, L
    Gunn, JE
    Gurbani, VK
    Hall, PB
    [J]. ASTRONOMICAL JOURNAL, 2003, 126 (04) : 2081 - 2086
  • [2] Adams A., 1994, Vistas in Astronomy, V38, P273, DOI 10.1016/0083-6656(94)90037-X
  • [3] Wide field imaging - I. Applications of neural networks to object detection and star/galaxy classification
    Andreon, S
    Gargiulo, G
    Longo, G
    Tagliaferri, R
    Capuano, N
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 319 (03) : 700 - 716
  • [4] BALL NM, 2001, THESIS U SUSSEX
  • [5] Feature relevance in morphological galaxy classification
    Bazell, D
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 316 (03) : 519 - 528
  • [6] Ensembles of classifiers for morphological galaxy classification
    Bazell, D
    Aha, DW
    [J]. ASTROPHYSICAL JOURNAL, 2001, 548 (01) : 219 - 223
  • [7] Beisbart C, 2002, LECT NOTES PHYS, V600, P358
  • [8] Bishop C. M., 1996, Neural networks for pattern recognition
  • [9] The Hubble Space Telescope WFPC2B-Band Parallel Survey:: A study of galaxy morphology for magnitudes 18≤B≤27
    Cohen, SH
    Windhorst, RA
    Odewahn, SC
    Chiarenza, CA
    Driver, SP
    [J]. ASTRONOMICAL JOURNAL, 2003, 125 (04) : 1762 - 1783
  • [10] COLLISTER AA, 2004, UNPUB MNRAS