Comparison of clustering algorithms for analog modulation classification

被引:42
作者
Guldemir, H [1 ]
Sengur, A [1 ]
机构
[1] Firat Univ, Dept Elect & Comp Sci, Tech Educ Fac, TR-23119 Elazig, Turkey
关键词
modulation recognition; modulation classification; clustering;
D O I
10.1016/j.eswa.2005.07.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces a comparative study of implementation of clustering algorithms on classification of the analog modulated communication signals. A number of key features are used for characterizing the analog modulation types. Four different clustering algorithms are used for classifying the analog signals. These most representative clustering techniques are K-means clustering, fuzzy C-means clustering, mountain clustering and subtractive clustering. Performance comparison of these clustering algorithms and the advantages and disadvantages of the methods are examined. The validity analysis is performed. The study is supported with computer simulations. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:642 / 649
页数:8
相关论文
共 25 条
  • [1] AUTOMATIC MODULATION RECOGNITION USING TIME DOMAIN PARAMETERS
    AISBETT, J
    [J]. SIGNAL PROCESSING, 1987, 13 (03) : 323 - 328
  • [2] [Anonymous], 1997, NEURO FUZZY SOFT COM
  • [3] [Anonymous], 1996, AUTOMATIC MODULATION
  • [4] [Anonymous], 1973, PATTERN RECOGNITION
  • [5] Bezdek J.C., 1973, Ph.D. Thesis
  • [6] CHIU SL, 1994, J INTELL FUZZY SYST, P2
  • [7] CHURMAN J, 1996, PATTERN CLASSIFICATI
  • [8] CLUSTER SEPARATION MEASURE
    DAVIES, DL
    BOULDIN, DW
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (02) : 224 - 227
  • [9] A GENERAL-APPROACH TO THE AUTOMATIC CLASSIFICATION OF RADIOCOMMUNICATION SIGNALS
    DOMINGUEZ, LV
    BORRALLO, JMP
    GARCIA, JP
    MEZCUA, BR
    [J]. SIGNAL PROCESSING, 1991, 22 (03) : 239 - 250
  • [10] DUBUC C, 1999, IEEE INT C COMM ICC