Nonlinear analysis of the Colpitts oscillator and applications to design

被引:188
作者
Maggio, GM [1 ]
De Feo, O
Kennedy, MP
机构
[1] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
[2] Natl Univ Ireland Univ Coll Dublin, Dept Elect & Elect Engn, Dublin 4, Ireland
[3] Swiss Fed Inst Technol, EPFL, Dept Elect Engn, CH-1015 Lausanne, Switzerland
关键词
bifurcations; chaos; coexistence of solutions; Colpitts oscillator; continuation methods;
D O I
10.1109/81.788813
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports a methodological approach to the analysis and design of sinusoidal oscillators based on bifurcation analysis. The simple Colpitts oscillator is taken as an example to demonstrate this nonlinear approach for both the nearly sinusoidal and chaotic modes of operation. In particular, it is shown how regular and irregular (chaotic) oscillations can be generated, depending on the circuit parameters.
引用
收藏
页码:1118 / 1130
页数:13
相关论文
共 24 条
  • [1] A frequency method for predicting limit cycle bifurcations
    Basso, M
    Genesio, R
    Tesi, A
    [J]. NONLINEAR DYNAMICS, 1997, 13 (04) : 339 - 360
  • [2] DETERMINATION OF DIFFERENT CONFIGURATIONS OF FOLD AND FLIP BIFURCATION CURVES OF A ONE OR TWO-DIMENSIONAL MAP
    Carcasses, Jean-Pierre
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (04): : 869 - 902
  • [3] NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-2 HOMOCLINIC BIFURCATIONS
    CHAMPNEYS, AR
    KUZNETSOV, YA
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (04): : 785 - 822
  • [4] CHUA LO, 1992, AEU-INT J ELECTRON C, V46, P250
  • [5] Doedel E., 1986, APPL MATH
  • [6] NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (I) BIFURCATION IN FINITE DIMENSIONS
    Doedel, Eusebius
    Keller, Herbert B.
    Kernevez, Jean Pierre
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03): : 493 - 520
  • [7] FREIRE E, 1996, P NONL DYN EL SYST N, P129
  • [8] BIFURCATION PHENOMENA NEAR HOMOCLINIC SYSTEMS - A 2-PARAMETER ANALYSIS
    GASPARD, P
    KAPRAL, R
    NICOLIS, G
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (5-6) : 697 - 727
  • [9] A HARMONIC BALANCE APPROACH FOR CHAOS PREDICTION: CHUA'S CIRCUIT
    Genesio, R.
    Tesi, A.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (01): : 61 - 79
  • [10] Predicting chaos through an harmonic balance technique: An application to the time-delayed Chua's circuit
    Gilli, M
    Maggio, GM
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1996, 43 (10) : 872 - 874