Computing the observed information in the hidden Markov model using the EM algorithm

被引:14
作者
Hughes, JP [1 ]
机构
[1] UNIV WASHINGTON,DEPT BIOSTAT,SEATTLE,WA 98195
关键词
hidden Markov model; EM algorithm; information;
D O I
10.1016/S0167-7152(96)00062-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A method of computing the observed information for the hidden Markov model using the EM algorithm and the results of Louis (1982) is described. Generating the ''exact'' information may be computationally intensive for large datasets but an approximation is given which significantly reduces the computational effort in most cases.
引用
收藏
页码:107 / 114
页数:8
相关论文
共 13 条
[1]   A MAXIMIZATION TECHNIQUE OCCURRING IN STATISTICAL ANALYSIS OF PROBABILISTIC FUNCTIONS OF MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T ;
SOULES, G ;
WEISS, N .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (01) :164-&
[2]  
CHURCHILL GA, 1989, B MATH BIOL, V51, P79
[3]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[4]  
Guttorp P., 1995, Stochastic Modeling ofScientific Data
[5]   HIDDEN MARKOV-MODELS FOR SPEECH RECOGNITION [J].
JUANG, BH ;
RABINER, LR .
TECHNOMETRICS, 1991, 33 (03) :251-272
[6]  
LOUIS TA, 1982, J ROY STAT SOC B MET, V44, P226
[7]  
MEILIJSON I, 1989, J ROY STAT SOC B MET, V51, P217
[8]   USING EM TO OBTAIN ASYMPTOTIC VARIANCE - COVARIANCE MATRICES - THE SEM ALGORITHM [J].
MENG, XL ;
RUBIN, DB .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (416) :899-909
[9]  
NEWTON MA, 1992, P 24 S INT COMP SCI, P449
[10]  
ORCHARD T, 1972, 6TH P BERK S MATH ST, V1, P697