A variational theory of hyperbolic Lagrangian coherent structures (vol 240, pg 574, 2011)

被引:28
作者
Farazmand, Mohammad [1 ]
Haller, George [1 ,2 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[2] McGill Univ, Dept Mech Engn, Montreal, PQ H3A 2K6, Canada
关键词
Lagrangian coherent structures; Invariant manifolds; Mixing;
D O I
10.1016/j.physd.2011.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This brief note corrects a minor error in the statement of the main result in Haller (2011) [1] on a variational approach to Lagrangian coherent structures. We also show that the corrected formulation leads to a substantial simplification of LCS criteria for two-dimensional flows. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:439 / 441
页数:3
相关论文
共 6 条
[1]  
Farazmand M, 2011, PHYSICA D, V240, P574, DOI DOI 10.1016/J.PHYSD.2010.11.010
[2]  
Farazmand M., 2011, COMPUTATION LAGRANGI
[3]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
[4]   Lagrangian coherent structures and the smallest finite-time Lyapunov exponent [J].
Haller, George ;
Sapsis, Themistoklis .
CHAOS, 2011, 21 (02)
[5]   A variational theory of hyperbolic Lagrangian Coherent Structures [J].
Haller, George .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (07) :574-598
[6]   Lagrangian Coherent Structure Analysis of Terminal Winds Detected by Lidar. Part II: Structure Evolution and Comparison with Flight Data [J].
Tang, Wenbo ;
Chan, Pak Wai ;
Haller, George .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2011, 50 (10) :2167-2183