Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing

被引:178
作者
Martinez-Contreras, R
Fisette, JF
Nasim, FH
Madden, R
Cordeau, M
Chabot, B [1 ]
机构
[1] Univ Sherbrooke, RNA RNP Grp, Dept Microbiol & Infectiol, Fac Med & Sci Sante, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Sherbrooke, Ctr Genom Fonct Sherbrooke, Fac Med & Sci Sante, Sherbrooke, PQ J1K 2R1, Canada
关键词
D O I
10.1371/journal.pbio.0040021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
hnRNP A/B proteins modulate the alternative splicing of several mammalian and viral pre-mRNAs, and are typically viewed as proteins that enforce the activity of splicing silencers. Here we show that intronic hnRNP A/B-binding sites ( ABS) can stimulate the in vitro splicing of pre-mRNAs containing artificially enlarged introns. Stimulation of in vitro splicing could also be obtained by providing intronic ABS in trans through the use of antisense oligonucleotides containing a non-hybridizing ABS-carrying tail. ABS-tailed oligonucleotides also improved the in vivo inclusion of an alternative exon flanked by an enlarged intron. Notably, binding sites for hnRNP F/H proteins (FBS) replicate the activity of ABS by improving the splicing of an enlarged intron and by modulating 5' splice-site selection. One hypothesis formulated to explain these effects is that bound hnRNP proteins self-interact to bring in closer proximity the external pair of splice sites. Consistent with this model, positioning FBS or ABS at both ends of an intron was required to stimulate splicing of some pre-mRNAs. In addition, a computational analysis of the configuration of putative FBS and ABS located at the ends of introns supports the view that these motifs have evolved to support cooperative interactions. Our results document a positive role for the hnRNP A/B and hnRNP F/H proteins in generic splicing, and suggest that these proteins may modulate the conformation of mammalian pre-mRNAs.
引用
收藏
页码:172 / 185
页数:14
相关论文
共 46 条
[1]   TARGETED SNRNP DEPLETION REVEALS AN ADDITIONAL ROLE FOR MAMMALIAN U1 SNRNP IN SPLICEOSOME ASSEMBLY [J].
BARABINO, SML ;
BLENCOWE, BJ ;
RYDER, U ;
SPROAT, BS ;
LAMOND, AI .
CELL, 1990, 63 (02) :293-302
[2]   Influence of intron length on alternative splicing of CD44 [J].
Bell, MV ;
Cowper, AE ;
Lefranc, MP ;
Bell, JI ;
Screaton, GR .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (10) :5930-5941
[3]   Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization [J].
Blanchette, M ;
Chabot, B .
EMBO JOURNAL, 1999, 18 (07) :1939-1952
[4]   hnRNP H binding at the 5′ splice site correlates with the pathological effect of two intronic mutations in the NF-1 and TSHβ genes [J].
Buratti, E ;
Baralle, M ;
De Conti, L ;
Baralle, D ;
Romano, M ;
Ayala, YM ;
Baralle, FE .
NUCLEIC ACIDS RESEARCH, 2004, 32 (14) :4224-4236
[5]   RNA-BINDING SPECIFICITY OF HNRNP A1 - SIGNIFICANCE OF HNRNP A1 HIGH-AFFINITY BINDING-SITES IN PRE-MESSENGER-RNA SPLICING [J].
BURD, CG ;
DREYFUSS, G .
EMBO JOURNAL, 1994, 13 (05) :1197-1204
[6]   RECOMBINANT HNRNP PROTEIN A1 AND ITS N-TERMINAL DOMAIN SHOW PREFERENTIAL AFFINITY FOR OLIGODEOXYNUCLEOTIDES HOMOLOGOUS TO INTRON EXON ACCEPTOR SITES [J].
BUVOLI, M ;
COBIANCHI, F ;
BIAMONTI, G ;
RIVA, S .
NUCLEIC ACIDS RESEARCH, 1990, 18 (22) :6595-6600
[7]   SR proteins and hnRNP H regulate the splicing of the HIV-1 tev-specific exon 6D [J].
Caputi, M ;
Zahler, AM .
EMBO JOURNAL, 2002, 21 (04) :845-855
[8]   Determination of the RNA binding specificity of the heterogeneous nuclear ribonucleoprotein (hnRNP) H/H′/F/2H9 family [J].
Caputi, M ;
Zahler, AM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (47) :43850-43859
[9]  
Carlo T, 1996, RNA, V2, P342
[10]   In recognition of the sixtieth birthday of Roger L. Fosdick [J].
Carlson, DE ;
Chen, YC .
JOURNAL OF ELASTICITY, 2000, 59 (1-3) :1-1