TURING PATTERN FORMATION IN THE BRUSSELATOR MODEL WITH SUPERDIFFUSION

被引:84
作者
Golovin, A. A. [1 ]
Matkowsky, B. J. [1 ]
Volpert, V. A.
机构
[1] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
关键词
pattern formation; Brusselator; anomalous diffusion; superdiffusion; Turing instability;
D O I
10.1137/070703454
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The effect of superdiffusion on pattern formation and pattern selection in the Brusselator model is studied. Our linear stability analysis shows, in particular, that, unlike the case of normal diffusion, the Turing instability can occur even when diffusion of the inhibitor is slower than that of the initiator. A weakly nonlinear analysis yields a system of amplitude equations, analysis of which predicts parameter regimes where hexagons, stripes, and their coexistence are expected. Numerical computations of the original Brusselator model near the stability boundaries confirm the results of the analysis. In addition, further from the stability boundaries, we find a regime of self-replicating spots.
引用
收藏
页码:251 / 272
页数:22
相关论文
共 63 条
[1]   Subdiffusion and anomalous local viscoelasticity in actin networks [J].
Amblard, F ;
Maggs, AC ;
Yurke, B ;
Pargellis, AN ;
Leibler, S .
PHYSICAL REVIEW LETTERS, 1996, 77 (21) :4470-4473
[2]   Anomalous surfactant diffusion in a living polymer system [J].
Angelico, Ruggero ;
Ceglie, Andrea ;
Olsson, Ulf ;
Palazzo, Gerardo ;
Ambrosone, Luigi .
PHYSICAL REVIEW E, 2006, 74 (03)
[3]  
[Anonymous], 1986, REACTION DIFFUSION E
[4]  
[Anonymous], 1937, MOSCOW U B MATH
[5]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[6]   Front propagation in reaction-superdiffusion dynamics: Taming Levy flights with fluctuations [J].
Brockmann, D. ;
Hufnagel, L. .
PHYSICAL REVIEW LETTERS, 2007, 98 (17)
[7]   Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model [J].
Carreras, BA ;
Lynch, VE ;
Zaslavsky, GM .
PHYSICS OF PLASMAS, 2001, 8 (12) :5096-5103
[8]   Front dynamics in reaction-diffusion systems with Levy flights: A fractional diffusion approach [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICAL REVIEW LETTERS, 2003, 91 (01)
[9]   Experimental evidence of power-law trapping-time distributions in porous media [J].
Drazer, G ;
Zanette, DH .
PHYSICAL REVIEW E, 1999, 60 (05) :5858-5864
[10]  
Fife PC, 1979, Mathematical Aspects of Reacting and Diffusing Systems, V28