A C-2 triangular patch for the interpolation of functional scattered data

被引:12
作者
Chang, LHT
Said, HB
机构
[1] School of Mathematical Sciences, Universiti Sains Malaysia
关键词
scattered data points; barycentric coordinates; Bezier patches; triangular patches;
D O I
10.1016/S0010-4485(96)00068-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a set of data points with their positional, first- and second-order partial derivative values, we wish to construct a smooth surface which interpolates these values. The method requires triangulation of the data, and a rationally corrected quintic Bezier triangular patch scheme is then employed on each triangle. Each patch is rational of degree 9 over degree 4 but can be controlled by only 27 Bezier points. The data given enables us to determine appropriate Bezier control points so that adjacent patches meet with C-2 continuity. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:407 / 412
页数:6
相关论文
共 16 条
[1]   A TRANSFINITE C-2 INTERPOLANT OVER TRIANGLES [J].
ALFELD, P ;
BARNHILL, RE .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1984, 14 (01) :17-39
[2]  
ALFELD P, 1984, COMPUT AIDED GEOM D, V1, P267
[3]  
[Anonymous], 1977, Mathematical Software, DOI [DOI 10.1016/B978-0-12-587260-7.50011-X2, 10.1016/B978-0-12-587260-7.50011-X, DOI 10.1016/B978-0-12-587260-7.50011-X]
[4]  
CHANG LHT, THESIS U SAINS MALAY
[5]  
Farin G., 1986, Computer-Aided Geometric Design, V3, P83, DOI 10.1016/0167-8396(86)90016-6
[6]  
FOLEY TA, 1992, MATH METHODS COMPUTE, P275
[7]   SCATTERED DATA INTERPOLATION - TESTS OF SOME METHODS [J].
FRANKE, R .
MATHEMATICS OF COMPUTATION, 1982, 38 (157) :181-200
[8]   A C-1 TRIANGULAR INTERPOLANT SUITABLE FOR SCATTERED DATA INTERPOLATION [J].
GOODMAN, TNT ;
SAID, HB .
COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1991, 7 (06) :479-485
[9]   LOCAL DERIVATIVE ESTIMATION FOR SCATTERED DATA INTERPOLATION [J].
GOODMAN, TNT ;
SAID, HB ;
CHANG, LHT .
APPLIED MATHEMATICS AND COMPUTATION, 1995, 68 (01) :41-50
[10]  
Little F.F., 1983, Surf. Comput. Aided Geom. Des, P99