Nω-nitroarginine-containing dipeptide amides.: Potent and highly selective inhibitors of neuronal nitric oxide synthase

被引:76
作者
Huang, H
Martasek, P
Roman, LJ
Masters, BSS
Silverman, RB
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Biochem Mol Biol & Cell Biol, Evanston, IL 60208 USA
[3] Univ Texas, Hlth Sci Ctr, Dept Biochem, San Antonio, TX 78284 USA
关键词
D O I
10.1021/jm990111c
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Selective inhibition of the isoforms of nitric oxide synthase (NOS) could be therapeutically useful in the treatment of certain disease states arising from the overproduction of nitric oxide (NO). Recently, we reported the dipeptide methyl ester, D-Phe-D-Arg(NO2)-OMe (19), as a modest inhibitor of nNOS (K-i = 2 mu M), but with selectivity over iNOS as high as 1800-fold (Silverman, R. B.; Huang, H.; Marletta, M. A.; Martasek, P. J. Med. Chem. 1997, 40, 2813-2817). Here a library of 152 dipeptide amides containing nitroarginine and amino acids other than Phe are synthesized and screened for activity. Excellent inhibitory potency and selectivity for nNOS over eNOS and iNOS is achieved with the dipeptide amides containing a basic amine side chain (20-24), which indicates a possible electrostatic (or hydrogen bonding) interaction at the enzyme active site. The most potent nNOS inhibitor among these compounds is L-Arg(NO2)-L-Dbu-NH2 (23) (K-i = 130 nM), which also exhibits the highest selectivity over eNOS (>1500-fold) with a 192-fold selectivity over iNOS. These compounds do not exhibit time-dependent inhibition. The order and the chirality of the amino acids in the dipeptide amides have profound influences on the inhibitory potency as well as on the isoform selectivity. These dipeptide amide inhibitors open the door to the design of potent and highly selective inhibitors of nNOS.
引用
收藏
页码:3147 / 3153
页数:7
相关论文
共 43 条
[1]   N5-(1-imino-5-butenyl)-L-ornithine -: A neuronal isoform selective mechanism-based inactivator of nitric oxide synthase [J].
Babu, BR ;
Griffith, OW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (15) :8882-8889
[2]   ATTENUATION OF TOLERANCE TO, AND PHYSICAL-DEPENDENCE ON, MORPHINE IN THE RAT BY INHIBITION OF NITRIC-OXIDE SYNTHASE [J].
BHARGAVA, HN .
GENERAL PHARMACOLOGY, 1995, 26 (05) :1049-1053
[3]  
BODANSZKY M, 1972, BIOORG CHEM, V2, P30
[4]  
CHOI DW, 1990, ANNU REV NEUROSCI, V13, P171, DOI 10.1146/annurev.neuro.13.1.171
[5]   N-phenylamidines as selective inhibitors of human neuronal nitric oxide synthase:: Structure-activity studies and demonstration of in vivo activity [J].
Collins, JL ;
Shearer, BG ;
Oplinger, JA ;
Lee, SL ;
Garvey, EP ;
Salter, M ;
Duffy, C ;
Burnette, TC ;
Furfine, ES .
JOURNAL OF MEDICINAL CHEMISTRY, 1998, 41 (15) :2858-2871
[6]   Nitroaromatic amino acids as inhibitors of neuronal nitric oxide synthase [J].
Cowart, M ;
Kowaluk, EA ;
Daanen, JF ;
Kohlhaas, KL ;
Alexander, KM ;
Wagenaar, FL ;
Kerwin, JF .
JOURNAL OF MEDICINAL CHEMISTRY, 1998, 41 (14) :2636-2642
[7]   THE DETERMINATION OF ENZYME INHIBITOR CONSTANTS [J].
DIXON, M .
BIOCHEMICAL JOURNAL, 1953, 55 (01) :170-171
[8]   NITRIC-OXIDE SYNTHASE ACTIVITY IS ELEVATED IN BRAIN MICROVESSELS IN ALZHEIMERS-DISEASE [J].
DORHEIM, MA ;
TRACEY, WR ;
POLLOCK, JS ;
GRAMMAS, P .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1994, 205 (01) :659-665
[9]   SELECTIVE-INHIBITION OF CONSTITUTIVE NITRIC-OXIDE SYNTHASE BY L-N(G)-NITROARGININE [J].
FURFINE, ES ;
HARMON, MF ;
PAITH, JE ;
GARVEY, EP .
BIOCHEMISTRY, 1993, 32 (33) :8512-8517
[10]  
GARTHWAITE J, 1989, NMDA RECEPTOR, P187