Effect of anisotropic volume change in tin phosphate nanoparticle anode material with mesocellular foam structure on capacity retention

被引:9
作者
Kim, E [1 ]
Kim, MG
Cho, J
机构
[1] Kumoh Natl Inst Technol, Dept Appl Chem, Gumi, South Korea
[2] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Beamline Res Div, Pohang, South Korea
关键词
D O I
10.1149/1.2193082
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Tin phosphate nanoparticles within microcellular foams were prepared using a nonionic triblock copolymer surfactant P123. The annealed sample at 500 degrees C showed the particle size of 50-200 nm, and the size of the mesocelluar foam was ranged from 4 to 20 nm. Due to the irregular porewall thickness and pore size of the annealed sample, the pore wall structure had completely collapsed after first cycle. As the number of cycles increased, metallic tin clusters grew in the lithium phosphate matrix, and uniformly dispersed tetragonal tin nanoparticles with a particle size of 3 nm were observed after 100 cycles. This indicated that tin clusters decomposed from tin phosphate expanded and contracted reversibly in the matrix without particle aggregation. This was well supported by the electrochemical data, and the capacity increased to from 285 to 520 mAh/g with no capacity fading.
引用
收藏
页码:A311 / A314
页数:4
相关论文
共 24 条
[1]   Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium [J].
Cai, Q ;
Luo, ZS ;
Pang, WQ ;
Fan, YW ;
Chen, XH ;
Cui, FZ .
CHEMISTRY OF MATERIALS, 2001, 13 (02) :258-263
[2]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[3]   Nanocrystalline transition-metal oxide spheres with controlled multi-scale porosity [J].
Grosso, D ;
Illia, GJDAS ;
Crepaldi, EL ;
Charleux, B ;
Sanchez, C .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (01) :37-42
[4]   Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures [J].
Han, Y ;
Ying, JY .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (02) :288-292
[5]   Electrochemistry of InSb as a Li insertion host problems and prospects [J].
Hewitt, KC ;
Beaulieu, LY ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (05) :A402-A410
[6]   LixCu6Sn5 (0<x<13):: An intermetallic insertion electrode for rechargeable lithium batteries [J].
Kepler, KD ;
Vaughey, JT ;
Thackeray, MM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (07) :307-309
[7]   Critical size of a nano SnO2 electrode for Li-secondary battery [J].
Kim, C ;
Noh, M ;
Choi, M ;
Cho, J ;
Park, B .
CHEMISTRY OF MATERIALS, 2005, 17 (12) :3297-3301
[8]   Effect of pore size and pore wall thickness of mesoporous phase in tin phosphate composite on electrochemical cycling [J].
Kim, E ;
Kim, MG ;
Kim, Y ;
Cho, J .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (09) :A452-A455
[9]   A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries [J].
Kim, E ;
Son, D ;
Kim, TG ;
Cho, J ;
Park, B ;
Ryu, KS ;
Chang, SH .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (44) :5987-5990
[10]   The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries [J].
Kim, H ;
Choi, J ;
Sohn, HJ ;
Kang, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (12) :4401-4405