Repeat-until-success quantum computing using stationary and flying qubits

被引:105
作者
Lim, YL
Barrett, SD
Beige, A
Kok, P
Kwek, LC
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England
[2] Hewlett Packard Labs, Bristol BS34 8QZ, Avon, England
[3] Nanyang Technol Univ, Natl Inst Educ, Singapore 639798, Singapore
[4] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 01期
关键词
D O I
10.1103/PhysRevA.73.012304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce an architecture for robust and scalable quantum computation using both stationary qubits (e.g., single photon sources made out of trapped atoms, molecules, ions, quantum dots, or defect centers in solids) and flying qubits (e.g., photons). Our scheme solves some of the most pressing problems in existing nonhybrid proposals, which include the difficulty of scaling conventional stationary qubit approaches, and the lack of practical means for storing single photons in linear optics setups. We combine elements of two previous proposals for distributed quantum computing, namely the efficient photon-loss tolerant build up of cluster states by Barrett and Kok [Phys. Rev. A 71, 060310(R) (2005)] with the idea of repeat-until-success (RUS) quantum computing by Lim [Phys. Rev. Lett. 95, 030505 (2005)]. This idea can be used to perform eventually deterministic two qubit logic gates on spatially separated stationary qubits via photon pair measurements. Under nonideal conditions, where photon loss is a possibility, the resulting gates can still be used to build graph states for one-way quantum computing. In this paper, we describe the RUS method, present possible experimental realizations, and analyze the generation of graph states.
引用
收藏
页数:14
相关论文
共 87 条
[1]  
[Anonymous], 1985, IBM Technical Disclosure Bulletin, V28, P3153
[2]   Efficient high-fidelity quantum computation using matter qubits and linear optics [J].
Barrett, SD ;
Kok, P .
PHYSICAL REVIEW A, 2005, 71 (06)
[3]   Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities [J].
Barrett, SD ;
Kok, P ;
Nemoto, K ;
Beausoleil, RG ;
Munro, WJ ;
Spiller, TP .
PHYSICAL REVIEW A, 2005, 71 (06)
[4]   Ion-trap quantum computing in the presence of cooling [J].
Beige, A .
PHYSICAL REVIEW A, 2004, 69 (01) :11
[5]   Quantum computing using dissipation to remain in a decoherence-free subspace [J].
Beige, A ;
Braun, D ;
Tregenna, B ;
Knight, PL .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1762-1765
[6]   Comment on "Efficient high-fidelity quantum computation using matter qubits and linear optics" [J].
Benjamin, SC .
PHYSICAL REVIEW A, 2005, 72 (05)
[7]   Optical generation of matter qubit graph states [J].
Benjamin, SC ;
Eisert, J ;
Stace, TM .
NEW JOURNAL OF PHYSICS, 2005, 7
[8]  
Bennett C.H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[9]   Regulated and entangled photons from a single quantum dot [J].
Benson, O ;
Santori, C ;
Pelton, M ;
Yamamoto, Y .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2513-2516
[10]   Observation of entanglement between a single trapped atom and a single photon [J].
Blinov, BB ;
Moehring, DL ;
Duan, LM ;
Monroe, C .
NATURE, 2004, 428 (6979) :153-157