Conversion of Red Fluorescent Protein into a Bright Blue Probe

被引:225
作者
Subach, Oksana M. [1 ]
Gundorov, Illia S. [1 ]
Yoshimura, Masami [2 ]
Subach, Fedor V. [1 ]
Zhang, Jinghang [3 ]
Grueenwald, David [1 ]
Souslova, Ekaterina A. [4 ]
Chudakov, Dmitriy M. [4 ]
Verkhusha, Vladislav V. [1 ]
机构
[1] Albert Einstein Coll Med, Dept Anat & Struct Biol, Bronx, NY 10461 USA
[2] Louisiana State Univ, Sch Vet Med, Dept Comparat Biomed Sci, Baton Rouge, LA 70803 USA
[3] Albert Einstein Coll Med, FIow Cytometry Core Facil, Bronx, NY 10461 USA
[4] Shemiakin Ovchinnikov Inst Bioorgan Chem, Moscow 117997, Russia
来源
CHEMISTRY & BIOLOGY | 2008年 / 15卷 / 10期
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.chembiol.2008.08.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We used a red chromophore formation pathway, in which the anionic red chromophore is formed from the neutral blue intermediate, to suggest a rational design strategy to develop blue fluorescent proteins with a tyrosine-based chromophore. The strategy was applied to red fluorescent proteins of the different genetic backgrounds, such as TagRFP, mCherry, HcRed1, M355NA, and mKeima, which all were converted into blue probes. Further improvement of the blue variant of TagRFP by random mutagenesis resulted in an enhanced monomeric protein, mTagBFP, characterized by the substantially higher brightness, the faster chromophore maturation, and the higher pH stability than blue fluorescent proteins with a histidine in the chromophore. The detailed biochemical and photochemical analysis indicates that mTagBFP is the true monomeric protein tag for multicolor and lifetime imaging, as well as the outstanding donor for green fluorescent proteins in Forster resonance energy transfer applications.
引用
收藏
页码:1116 / 1124
页数:9
相关论文
共 34 条
[1]   Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins [J].
Ai, Hui-wang ;
Shaner, Nathan C. ;
Cheng, Zihao ;
Tsien, Roger Y. ;
Campbell, Robert E. .
BIOCHEMISTRY, 2007, 46 (20) :5904-5910
[2]   Hetero-oligomeric tagging diminishes non-specific aggregation of target proteins fused with anthozoa fluorescent proteins [J].
Bulina, ME ;
Verkhusha, VV ;
Staroverov, DB ;
Chudakov, DM ;
Lukyanov, KA .
BIOCHEMICAL JOURNAL, 2003, 371 (01) :109-114
[3]   Photoswitchable cyan fluorescent protein for protein tracking [J].
Chudakov, DM ;
Verkhusha, VV ;
Staroverov, DB ;
Souslova, EA ;
Lukyanov, S ;
Lukyanov, KA .
NATURE BIOTECHNOLOGY, 2004, 22 (11) :1435-1439
[4]   Improved green fluorescent protein by molecular evolution using DNA shuffling [J].
Crameri, A ;
Whitehorn, EA ;
Tate, E ;
Stemmer, WPC .
NATURE BIOTECHNOLOGY, 1996, 14 (03) :315-319
[5]   Imaging FRET standards by steady-state fluorescence and lifetime methods [J].
Domingo, Beatriz ;
Sabariegos, Rosario ;
Picazo, Fernando ;
Llopis, Juan .
MICROSCOPY RESEARCH AND TECHNIQUE, 2007, 70 (12) :1010-1021
[6]  
Flores-Ramirez Gabriela, 2007, BMC Chemical Biology, V7, P1, DOI 10.1186/1472-6769-7-1
[7]   Far-red fluorescent tag for protein labelling [J].
Fradkov, AF ;
Verkhusha, VV ;
Staroverov, DB ;
Bulina, ME ;
Yanushevich, YG ;
Martynov, VI ;
Lukyanov, S ;
Lukyanov, KA .
BIOCHEMICAL JOURNAL, 2002, 368 :17-21
[8]   Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells [J].
Galperin, E ;
Verkhusha, V ;
Sorkin, A .
NATURE METHODS, 2004, 1 (03) :209-217
[9]   Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy [J].
Gordon, GW ;
Berry, G ;
Liang, XH ;
Levine, B ;
Herman, B .
BIOPHYSICAL JOURNAL, 1998, 74 (05) :2702-2713
[10]   GFP-like chromoproteins as a source of far-red fluorescent proteins [J].
Gurskaya, NG ;
Fradkov, AF ;
Terskikh, A ;
Matz, MV ;
Labas, YA ;
Martynov, VI ;
Yanushevich, YG ;
Lukyanov, KA ;
Lukyanov, SA .
FEBS LETTERS, 2001, 507 (01) :16-20