Yeast ortholog of the Drosophila crooked neck protein promotes spliceosome assembly through stable U4/U6.U5 snRNP addition

被引:63
作者
Chung, SY
McLean, MR
Rymond, BC [1 ]
机构
[1] Univ Kentucky, TH Morgan Sch Biol Sci, Lexington, KY 40506 USA
[2] Univ Kentucky, Lucille P Markey Canc Ctr, Lexington, KY 40506 USA
关键词
pre-mRNA splicing; Saccharomyces cerevisiae; TPR motif; U1; snRNA;
D O I
10.1017/S1355838299990635
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutants in the Drosophila crooked neck (crn) gene show an embryonic lethal phenotype with severe developmental defects. The unusual crn protein consists of sixteen tandem repeats of the 34 amino acid tetratricopeptide (TPR) protein recognition domain. Cm-like TPR elements are found in several RNA processing proteins, although it is unknown how the TPR repeats or the crn protein contribute to Drosophila development. We have isolated a Saccharomyces cerevisiae gene, CLF1, that encodes a crooked neck-like factor. CLF1 is an essential gene but the lethal phenotype of a clf1::HIS3 chromosomal null mutant can be rescued by plasmid-based expression of CLF1 or the Drosophila cm open reading frame. Clf1 p is required in vivo and in vitro for pre-mRNA5' splice site cleavage. Extracts depleted of Clf1 p arrest spliceosome assembly after U2 snRNP addition but prior to productive U4/U6.U5 association. Yeast two-hybrid analyses and in vitro binding studies show that Clf1p interacts specifically and differentially with the U1 snRNP-Prp40p protein and the yeast U2AF65 homolog, Mud2p. Intriguingly, Prp40p and Mud2p also bind the phylogenetically conserved branchpoint binding protein (BBP/SF1). Our results indicate that Clf1p acts as a scaffolding protein in spliceosome assembly and suggest that Clf1p may support the cross-intron bridge during the prespliceosome-to-spliceosome transition.
引用
收藏
页码:1042 / 1054
页数:13
相关论文
共 55 条
[1]   THE YEAST MUD2 PROTEIN - AN INTERACTION WITH PRP11 DEFINES A BRIDGE BETWEEN COMMITMENT COMPLEXES AND U2 SNRNP ADDITION [J].
ABOVICH, N ;
LIAO, XLC ;
ROSBASH, M .
GENES & DEVELOPMENT, 1994, 8 (07) :843-854
[2]   Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals [J].
Abovich, N ;
Rosbash, M .
CELL, 1997, 89 (03) :403-412
[3]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[4]  
[Anonymous], 1994, METHODS YEAST GENETI
[5]  
Arning S, 1996, RNA, V2, P794
[6]   WW domain-mediated interactions reveal a spliceosome-associated protein that binds a third class of proline-rich motif: The proline glycine and methionine-rich motif [J].
Bedford, MT ;
Reed, R ;
Leder, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (18) :10602-10607
[7]   THE YDP PLASMIDS - A UNIFORM SET OF VECTORS BEARING VERSATILE GENE DISRUPTION CASSETTES FOR SACCHAROMYCES-CEREVISIAE [J].
BERBEN, G ;
DUMONT, J ;
GILLIQUET, V ;
BOLLE, PA ;
HILGER, F .
YEAST, 1991, 7 (05) :475-477
[8]   The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC [J].
Berglund, JA ;
Chua, K ;
Abovich, N ;
Reed, R ;
Rosbash, M .
CELL, 1997, 89 (05) :781-787
[9]   A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition [J].
Berglund, JA ;
Abovich, N ;
Rosbash, M .
GENES & DEVELOPMENT, 1998, 12 (06) :858-867
[10]   PRP38 ENCODES A YEAST PROTEIN REQUIRED FOR PRE-MESSENGER-RNA SPLICING AND MAINTENANCE OF STABLE U6 SMALL NUCLEAR-RNA LEVELS [J].
BLANTON, S ;
SRINIVASAN, A ;
RYMOND, BC .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (09) :3939-3947