Experimental investigation of laser transformation hardening of low alloy steel using response surface methodology

被引:39
作者
Babu, P. Dinesh [1 ]
Buvanashekaran, G. [2 ]
Balasubramanian, K. R. [1 ]
机构
[1] Natl Inst Technol, Dept Mech Engn, Tiruchirappalli 620015, Tamil Nadu, India
[2] Bharat Heavy Elect Ltd, Welding Res Inst, Tiruchirappalli 620014, Tamil Nadu, India
关键词
Laser transformation hardening; Low alloy steel; Response surface methodology; Factorial design; Optimization; HEAT INPUT; OPTIMIZATION; PARAMETERS; QUALITY;
D O I
10.1007/s00170-012-4616-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this research, a systematic investigation on laser transformation hardening (LTH) process is carried out on high-strength low-alloy medium carbon steel, EN25 using design of experiments (DOE). The effect of input process parameters like laser power, travel speed over the response hardened width (HW), hardened depth (HD), and hardened area (HA) are analyzed. The experimental trials are conducted based on the design matrix obtained from the 3(k) full factorial design (FFD) using a 2 kW continuous wave Nd:YAG laser power system. A quadratic regression model is developed to predict the responses using response surface methodology (RSM). Based on the developed mathematical models, the direct and interaction effects of the process parameters on LTH are investigated. The optimal hardening conditions are identified to maximize the HW and minimize the HD and HA. The results of the validation test show that the experimental values quite satisfactorily agree with the predicted values of the mathematical models and hence, the models can predict the response adequately.
引用
收藏
页码:1883 / 1897
页数:15
相关论文
共 32 条
[1]   Experimental investigation on laser transmission welding of PMMA to ABS via response surface modeling [J].
Acherjee, Bappa ;
Kuar, Arunanshu S. ;
Mitra, Souren ;
Misra, Dipten ;
Acharyya, Sanjib .
OPTICS AND LASER TECHNOLOGY, 2012, 44 (05) :1372-1383
[2]  
[Anonymous], 1994, SURFACE ENG, V5
[3]  
*ASM INT, 1998, ASM HDB, V4
[4]   Laser surface hardening: a review [J].
Babu, P. Dinesh ;
Balasubramanian, K. R. ;
Buvanashekaran, G. .
INTERNATIONAL JOURNAL OF SURFACE SCIENCE AND ENGINEERING, 2011, 5 (2-3) :131-151
[5]   Effects of laser phase transformation hardening parameters on heat input and hardened-bead profile quality of unalloyed titanium [J].
Badkar, D. S. ;
Pandey, K. S. ;
Buvanashekaran, G. .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2010, 20 (06) :1078-1091
[6]   Application of the central composite design in optimization of laser transformation hardening parameters of commercially pure titanium using Nd:YAG laser [J].
Badkar, Duradundi Sawant ;
Pandey, Krishna Shankar ;
Buvanashekaran, G. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2012, 59 (1-4) :169-192
[7]   Mathematical modelling and optimisation of laser welding of butt joints [J].
Balasubramanian K.R. ;
Sankaranarayanasamy K. ;
Suthakar T. ;
Sivapirakasam S.P. ;
Buvanashekaran G. .
International Journal of Computational Materials Science and Surface Engineering, 2010, 3 (04) :321-335
[8]   Optimization of different welding processes using statistical and numerical approaches - A reference guide [J].
Benyounis, K. Y. ;
Olabi, A. G. .
ADVANCES IN ENGINEERING SOFTWARE, 2008, 39 (06) :483-496
[9]   Multi-response optimization of CO2 laser-welding process of austenitic stainless steel [J].
Benyounis, K. Y. ;
Olabi, A. G. ;
Hashmi, M. S. J. .
OPTICS AND LASER TECHNOLOGY, 2008, 40 (01) :76-87
[10]   Effect of laser welding parameters on the heat input and weld-bead profile [J].
Benyounis, KY ;
Olabi, AG ;
Hashmi, MSJ .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 164 :978-985