A crystal clear solution for determining G-protein-coupled receptor structures

被引:97
作者
Tate, Christopher G. [1 ]
机构
[1] MRC, Mol Biol Lab, Cambridge CB2 0QH, England
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
G-protein-coupled receptors; GPCR structure; conformational thermostabilisation; thermostability; crystallisation; ADENOSINE A(2A) RECEPTOR; BETA(2)-ADRENERGIC RECEPTOR; MEMBRANE-PROTEIN; THERMAL-STABILITY; AGONIST; CRYSTALLIZATION; BINDING; PURIFICATION; RHODOPSIN; THERMOSTABILIZATION;
D O I
10.1016/j.tibs.2012.06.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
G-protein-coupled receptors (GPCRs) are medically important membrane proteins that are targeted by over 30% of small molecule drugs. At the time of writing, 15 unique GPCR structures have been determined, with 77 structures deposited in the PDB database, which offers new opportunities for drug development and for understanding the molecular mechanisms of GPCR activation. Many different factors have contributed to this success, but if there is one single factor that can be singled out as the foundation for producing well-diffracting GPCR crystals, it is the stabilisation of the detergent-solubilised receptor ligand complex. This review will focus predominantly on one of the successful strategies for the stabilisation of GPCRs, namely the thermostabilisation of GPCRs using systematic mutagenesis coupled with thermostability assays. Structures of thermostabilised GPCRs bound to a wide variety of ligands have been determined, which has led to an understanding of ligand specificity; why some ligands act as agonists as opposed to partial or inverse agonists; and the structural basis for receptor activation.
引用
收藏
页码:343 / 352
页数:10
相关论文
共 78 条
[1]   Microscale fluorescent thermal stability assay for membrane proteins [J].
Alexandrov, Alexander I. ;
Mileni, Mauro ;
Chien, Ellen Y. T. ;
Hanson, Michael A. ;
Stevens, Raymond C. .
STRUCTURE, 2008, 16 (03) :351-359
[2]   The pharmacological effects of the thermostabilising (m23) mutations and intra and extracellular (β36) deletions essential for crystallisation of the turkey β-adrenoceptor [J].
Baker, Jillian G. ;
Proudman, Richard G. W. ;
Tate, Christopher G. .
NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2011, 384 (01) :71-91
[3]   Structural Insights into Conformational Stability of Wild-Type and Mutant β1-Adrenergic Receptor [J].
Balaraman, Gouthaman S. ;
Bhattacharya, Supriyo ;
Vaidehi, Nagarajan .
BIOPHYSICAL JOURNAL, 2010, 99 (02) :568-577
[4]   Yeast mitochondrial ADP/ATP carriers are monomeric in detergents [J].
Bamber, Lisa ;
Harding, Marilyn ;
Butler, P. Jonathan G. ;
Kunji, Edmund R. S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (44) :16224-16229
[5]   Overcoming barriers to membrane protein structure determination [J].
Bill, Roslyn M. ;
Henderson, Peter J. F. ;
Iwata, So ;
Kunji, Edmund R. S. ;
Michel, Hartmut ;
Neutze, Richard ;
Newstead, Simon ;
Poolman, Bert ;
Tate, Christopher G. ;
Vogel, Horst .
NATURE BIOTECHNOLOGY, 2011, 29 (04) :335-340
[6]   Stabilizing membrane proteins [J].
Bowie, JU .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (04) :397-402
[7]   Crystallizing membrane proteins using lipidic mesophases [J].
Caffrey, Martin ;
Cherezov, Vadim .
NATURE PROTOCOLS, 2009, 4 (05) :706-731
[8]   Crystallizing Membrane Proteins for Structure Determination: Use of Lipidic Mesophases [J].
Caffrey, Martin .
ANNUAL REVIEW OF BIOPHYSICS, 2009, 38 :29-51
[9]   High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor [J].
Cherezov, Vadim ;
Rosenbaum, Daniel M. ;
Hanson, Michael A. ;
Rasmussen, Soren G. F. ;
Thian, Foon Sun ;
Kobilka, Tong Sun ;
Choi, Hee-Jung ;
Kuhn, Peter ;
Weis, William I. ;
Kobilka, Brian K. ;
Stevens, Raymond C. .
SCIENCE, 2007, 318 (5854) :1258-1265
[10]  
Congreve M., 2011, BRIT J PHARMACOL, V159, P986