共 49 条
An Archaeal Immune System Can Detect Multiple Protospacer Adjacent Motifs (PAMs) to Target Invader DNA
被引:92
作者:
Fischer, Susan
[1
]
Maier, Lisa-Katharina
[1
]
Stoll, Britta
[1
]
Brendel, Jutta
[1
]
Fischer, Eike
[1
]
Pfeiffer, Friedhelm
[2
]
Dyall-Smith, Mike
[3
]
Marchfelder, Anita
[1
]
机构:
[1] Univ Ulm, Dept Biol 2, D-89069 Ulm, Germany
[2] Max Planck Inst Biochem, Dept Membrane Biochem, D-82152 Martinsried, Germany
[3] Charles Sturt Univ, Sch Biomed Sci, Sydney, NSW 2678, Australia
关键词:
HALOFERAX-VOLCANII;
CRISPR RNA;
ACQUIRED-RESISTANCE;
DYNAMIC PROPERTIES;
BACTERIA;
DEFENSE;
SEQUENCE;
REPEATS;
GENOME;
GENES;
D O I:
10.1074/jbc.M112.377002
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system provides adaptive and heritable immunity against foreign genetic elements in most archaea and many bacteria. Although this system is widespread and diverse with many subtypes, only a few species have been investigated to elucidate the precise mechanisms for the defense of viruses or plasmids. Approximately 90% of all sequenced archaea encode CRISPR/Cas systems, but their molecular details have so far only been examined in three archaeal species: Sulfolobus solfataricus, Sulfolobus islandicus, and Pyrococcus furiosus. Here, we analyzed the CRISPR/Cas system of Haloferax volcanii using a plasmid-based invader assay. Haloferax encodes a type I-B CRISPR/Cas system with eight Cas proteins and three CRISPR loci for which the identity of protospacer adjacent motifs (PAMs) was unknown until now. We identified six different PAM sequences that are required upstream of the protospacer to permit target DNA recognition. This is only the second archaeon for which PAM sequences have been determined, and the first CRISPR group with such a high number of PAM sequences. Cells could survive the plasmid challenge if their CRISPR/Cas system was altered or defective, e. g. by deletion of the cas gene cassette. Experimental PAM data were supplemented with bioinformatics data on Haloferax and Haloquadratum.
引用
收藏
页码:33351 / 33363
页数:13
相关论文