Mapping in Vivo Chromatin Interactions in Yeast Suggests an Extended Chromatin Fiber with Regional Variation in Compaction

被引:109
作者
Dekker, Job [1 ,2 ]
机构
[1] Univ Massachusetts, Sch Med, Dept Mol Pharmacol & Biochem, Worcester, MA 01605 USA
[2] Univ Massachusetts, Sch Med, Program Gene Funct & Express, Worcester, MA 01605 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1074/jbc.M806479200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The higher order arrangement of nucleosomes and the level of compaction of the chromatin fiber play important roles in the control of gene expression and other genomic activities. Analysis of chromatin in vitro has suggested that under near physiological conditions chromatin fibers can become highly compact and that the level of compaction can be modulated by histone modifications. However, less is known about the organization of chromatin fibers in living cells. Here, we combine chromosome conformation capture (3C) data with distance measurements and polymer modeling to determine the in vivo mass density of a transcriptionally active 95-kb GC-rich domain on chromosome III of the yeast Saccharomyces cerevisiae. In contrast to previous reports, we find that yeast does not form a compact fiber but that chromatin is extended with a mass per unit length that is consistent with a rather loose arrangement of nucleosomes. Analysis of 3C data from a neighboring AT-rich chromosomal domain indicates that chromatin in this domain is more compact, but that mass density is still well below that of a canonical 30 nm fiber. Our approach should be widely applicable to scale 3C data to real spatial dimensions, which will facilitate the quantification of the effects of chromatin modifications and transcription on chromatin fiber organization.
引用
收藏
页码:34532 / 34540
页数:9
相关论文
共 62 条
[1]   THE DIAMETERS OF FROZEN-HYDRATED CHROMATIN FIBERS INCREASE WITH DNA LINKER LENGTH - EVIDENCE IN SUPPORT OF VARIABLE DIAMETER MODELS FOR CHROMATIN [J].
ATHEY, BD ;
SMITH, MF ;
RANKERT, DA ;
WILLIAMS, SP ;
LANGMORE, JP .
JOURNAL OF CELL BIOLOGY, 1990, 111 (03) :795-806
[2]   Clustering of meiotic double-strand breaks on yeast chromosome III [J].
Baudat, F ;
Nicolas, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :5213-5218
[3]   Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin [J].
Bednar, J ;
Horowitz, RA ;
Grigoryev, SA ;
Carruthers, LM ;
Hansen, JC ;
Koster, AJ ;
Woodcock, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (24) :14173-14178
[4]   Large-scale chromatin structure and function [J].
Belmont, AS ;
Dietzel, S ;
Nye, AC ;
Strukov, YG ;
Tumbar, T .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (03) :307-311
[5]   The compact chromatin structure of a Ty repeated sequence suppresses recombination hotspot activity in Saccharomyces cerevisiae [J].
Ben-Aroya, S ;
Mieczkowski, PA ;
Petes, TD ;
Kupiec, M .
MOLECULAR CELL, 2004, 15 (02) :221-231
[6]   Mating type-dependent constraints on the mobility of the left arm of yeast chromosome III [J].
Bressan, DA ;
Vazquez, J ;
Haber, JE .
JOURNAL OF CELL BIOLOGY, 2004, 164 (03) :361-371
[7]   Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques [J].
Bystricky, K ;
Heun, P ;
Gehlen, L ;
Langowski, J ;
Gasser, SM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (47) :16495-16500
[8]   Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: Mechanistic ramifications for higher-order chromatin folding [J].
Carruthers, LM ;
Bednar, J ;
Woodcock, CL ;
Hansen, JC .
BIOCHEMISTRY, 1998, 37 (42) :14776-14787
[9]   The three 'C's of chromosome conformation capture: controls, controls, controls [J].
Dekker, J .
NATURE METHODS, 2006, 3 (01) :17-21
[10]   A closer look at long-range chromosomal interactions [J].
Dekker, J .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (06) :277-280