Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations

被引:135
作者
Wohlert, J [1 ]
den Otter, WK
Edholm, O
Briels, WJ
机构
[1] AlbaNova Univ Ctr, Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden
[2] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands
关键词
D O I
10.1063/1.2171965
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomistic molecular dynamics simulations of a lipid bilayer were performed to calculate the free energy of a trans-membrane pore as a function of its radius. The free energy was calculated as a function of a reaction coordinate using a potential of mean constraint force. The pore radius was then calculated from the reaction coordinate using Monte Carlo particle insertions. The main characteristics of the free energy that comes out of the simulations are a quadratic shape for a radius less than about 0.3 nm, a linear shape for larger radii than this, and a rather abrupt change without local minima or maxima between the two regions. In the outer region, a line tension can be calculated, which is consistent with the experimentally measured values. Further, this line tension can be rationalized and understood in terms of the energetic cost for deforming a part of the lipid bilayer into a hydrophilic pore. The region with small radii can be described and understood in terms of statistical mechanics of density fluctuations. In the region of crossover between a quadratic and linear free energy there was some hysteresis associated with filling and evacuation of the pore with water. The metastable prepore state hypothesized to interpret the experiments was not observed in this region.
引用
收藏
页数:9
相关论文
共 51 条
[1]  
ABIDOR IG, 1979, BIOELECTROCH BIOENER, V6, P37
[2]  
[Anonymous], 2002, Mechanics of the cell
[3]  
Berendsen H. J. C., 1981, INTERMOLECULAR FORCE
[4]   Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature [J].
Berger, O ;
Edholm, O ;
Jahnig, F .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2002-2013
[5]   Transient pores in stretched vesicles: role of leak-out [J].
Brochard-Wyart, F ;
de Gennes, PG ;
Sandre, O .
PHYSICA A, 2000, 278 (1-2) :32-51
[6]   THE SHAPE OF LIPID MOLECULES AND MONOLAYER MEMBRANE-FUSION [J].
CHERNOMORDIK, LV ;
KOZLOV, MM ;
MELIKYAN, GB ;
ABIDOR, IG ;
MARKIN, VS ;
CHIZMADZHEV, YA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1985, 812 (03) :643-655
[7]   INCORPORATION OF SURFACE-TENSION INTO MOLECULAR-DYNAMICS SIMULATION OF AN INTERFACE - A FLUID-PHASE LIPID BILAYER-MEMBRANE [J].
CHIU, SW ;
CLARK, M ;
BALAJI, V ;
SUBRAMANIAM, S ;
SCOTT, HL ;
JAKOBSSON, E .
BIOPHYSICAL JOURNAL, 1995, 69 (04) :1230-1245
[8]   Modeling electroporation in a single cell. I. Effects of field strength and rest potential [J].
DeBruin, KA ;
Krassowska, W .
BIOPHYSICAL JOURNAL, 1999, 77 (03) :1213-1224
[9]  
DEGENNES PG, COMMUNICATION
[10]   Free energy from molecular dynamics with multiple constraints [J].
Den Otter, WK ;
Briels, WJ .
MOLECULAR PHYSICS, 2000, 98 (12) :773-781