Study of claudin function by RNA interference

被引:200
作者
Hou, Jianghui
Gomes, Antonio S.
Paul, David L.
Goodenough, Daniel A.
机构
[1] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Neurobiol, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.M608853200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Claudins are tight junction proteins that play a key selectivity role in the paracellular conductance of ions. Numerous studies of claudin function have been carried out using the overexpression strategy to add new claudin channels to an existing paracellular protein background. Here, we report the systematic knockdown of endogenous claudin gene expression in Madin-Darby canine kidney (MDCK) cells and in LLC-PK1 cells using small interfering RNA against claudins 1-4 and 7. In MDCK cells ( showing cation selectivity), claudins 2, 4, and 7 are powerful effectors of paracellular Na+ permeation. Removal of claudin-2 depressed the permeation of Na+ and resulted in the loss of cation selectivity. Loss of claudin-4 or -7 expression elevated the permeation of Na+ and enhanced the proclivity of the tight junction for cations. On the other hand, LLC-PK1 cells express little endogenous claudin- 2 and show anion selectivity. In LLC-PK1 cells, claudin- 4 and -7 are powerful effectors of paracellular Cl- permeation. Knockdown of claudin- 4 or -7 expression depressed the permeation of Cl- and caused the tight junction to lose the anion selectivity. In conclusion, claudin- 2 functions as a paracellular channel to Na+ to increase the cation selectivity of the tight junction; claudin- 4 and -7 function either as paracellular barriers to Na+ or as paracellular channels to Cl-, depending upon the cellular background, to decrease the cation selectivity of the tight junction.
引用
收藏
页码:36117 / 36123
页数:7
相关论文
共 35 条
[1]   Overexpression of claudin-7 decreases the paracellular Cl- conductance and increases the paracellular Na+ conductance in LLC-PK1 cells [J].
Alexandre, MD ;
Lu, Q ;
Chen, YH .
JOURNAL OF CELL SCIENCE, 2005, 118 (12) :2683-2693
[2]   Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells [J].
Amasheh, S ;
Meiri, N ;
Gitter, AH ;
Schöneberg, T ;
Mankertz, J ;
Schulzke, JD ;
Fromm, M .
JOURNAL OF CELL SCIENCE, 2002, 115 (24) :4969-4976
[3]   Setting up a selective barrier at the apical junction complex [J].
Anderson, JM ;
Van Itallie, CM ;
Fanning, AS .
CURRENT OPINION IN CELL BIOLOGY, 2004, 16 (02) :140-145
[4]   Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration [J].
Ben-Yosef, T ;
Belyantseva, IA ;
Saunders, TL ;
Hughes, ED ;
Kawamoto, K ;
Van Itallie, CM ;
Beyer, LA ;
Halsey, K ;
Gardner, DJ ;
Wilcox, ER ;
Rasmussen, J ;
Anderson, JM ;
Dolan, DF ;
Forge, A ;
Raphael, Y ;
Camper, SA ;
Friedman, TB .
HUMAN MOLECULAR GENETICS, 2003, 12 (16) :2049-2061
[5]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[6]   POLARIZED MONOLAYERS FORMED BY EPITHELIAL-CELLS ON A PERMEABLE AND TRANSLUCENT SUPPORT [J].
CEREIJIDO, M ;
ROBBINS, ES ;
DOLAN, WJ ;
ROTUNNO, CA ;
SABATINI, DD .
JOURNAL OF CELL BIOLOGY, 1978, 77 (03) :853-880
[7]   Claudins create charge-selective channels in the paracellular pathway between epithelial cells [J].
Colegio, OR ;
Van Itallie, CM ;
McCrea, HJ ;
Rahner, C ;
Anderson, JM .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2002, 283 (01) :C142-C147
[8]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[9]   A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts [J].
Furuse, M ;
Sasaki, H ;
Fujimoto, K ;
Tsukita, S .
JOURNAL OF CELL BIOLOGY, 1998, 143 (02) :391-401
[10]   OCCLUDIN - A NOVEL INTEGRAL MEMBRANE-PROTEIN LOCALIZING AT TIGHT JUNCTIONS [J].
FURUSE, M ;
HIRASE, T ;
ITOH, M ;
NAGAFUCHI, A ;
YONEMURA, S ;
TSUKITA, S ;
TSUKITA, S .
JOURNAL OF CELL BIOLOGY, 1993, 123 (06) :1777-1788