Quantifying the connectivity of a network: The network correlation function method

被引:36
作者
Barzel, Baruch [1 ]
Biham, Ofer [1 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
关键词
complex networks; graph theory; network topology; SMALL-WORLD; EVOLUTION; DIAMETER;
D O I
10.1103/PhysRevE.80.046104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Networks are useful for describing systems of interacting objects, where the nodes represent the objects and the edges represent the interactions between them. The applications include chemical and metabolic systems, food webs as well as social networks. Lately, it was found that many of these networks display some common topological features, such as high clustering, small average path length (small-world networks), and a power-law degree distribution (scale-free networks). The topological features of a network are commonly related to the network's functionality. However, the topology alone does not account for the nature of the interactions in the network and their strength. Here, we present a method for evaluating the correlations between pairs of nodes in the network. These correlations depend both on the topology and on the functionality of the network. A network with high connectivity displays strong correlations between its interacting nodes and thus features small-world functionality. We quantify the correlations between all pairs of nodes in the network, and express them as matrix elements in the correlation matrix. From this information, one can plot the correlation function for the network and to extract the correlation length. The connectivity of a network is then defined as the ratio between this correlation length and the average path length of the network. Using this method, we distinguish between a topological small world and a functional small world, where the latter is characterized by long-range correlations and high connectivity. Clearly, networks that share the same topology may have different connectivities, based on the nature and strength of their interactions. The method is demonstrated on metabolic networks, but can be readily generalized to other types of networks.
引用
收藏
页数:11
相关论文
共 42 条
[1]   Power-Law distribution of the World Wide Web [J].
Adamic, LA ;
Huberman, BA ;
Barabási, AL ;
Albert, R ;
Jeong, H ;
Bianconi, G .
SCIENCE, 2000, 287 (5461)
[2]  
ADAMIC LA, 1999, P 3 EUR C ECDL 99, P433
[3]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[4]   Internet -: Diameter of the World-Wide Web [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 1999, 401 (6749) :130-131
[5]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[6]   Classes of small-world networks [J].
Amaral, LAN ;
Scala, A ;
Barthélémy, M ;
Stanley, HE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11149-11152
[7]  
[Anonymous], 2006, An Introduction to Systems Biology: Design Principles of Biological Circuits, DOI DOI 10.1201/9781420011432
[8]  
[Anonymous], 1989, The Small World
[9]   Evolution of the social network of scientific collaborations [J].
Barabási, AL ;
Jeong, H ;
Néda, Z ;
Ravasz, E ;
Schubert, A ;
Vicsek, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 311 (3-4) :590-614
[10]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512