A consensus prognostic gene expression classifier for ER positive breast cancer

被引:78
作者
Teschendorff, Andrew E.
Naderi, Ali
Barbosa-Morais, Nuno L.
Pinder, Sarah E.
Ellis, Ian O.
Aparicio, Sam
Brenton, James D.
Caldas, Carlos
机构
[1] Univ Cambridge, Dept Oncol, Canc Genom Program, Hutchison MRC Res Ctr, Cambridge CB2 2XZ, England
[2] Univ Lisbon, Fac Med, Inst Mol Med, P-1649028 Lisbon, Portugal
[3] Univ Cambridge, Dept Pathol, Canc Genom Program, Hutchison MRC Res Ctr, Cambridge CB2 2XZ, England
[4] Univ Nottingham, Nottingham NG5 1PB, England
[5] Nottingham City Hosp NHS Trust, Nottingham NG5 1PB, England
[6] British Columbia Canc Res Ctr, Mol Oncol & Breast Canc Program, Vancouver, BC V5Z 1L3, Canada
关键词
D O I
10.1186/gb-2006-7-10-r101
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: A consensus prognostic gene expression classifier is still elusive in heterogeneous diseases such as breast cancer. Results: Here we perform a combined analysis of three major breast cancer microarray data sets to hone in on a universally valid prognostic molecular classifier in estrogen receptor (ER) positive tumors. Using a recently developed robust measure of prognostic separation, we further validate the prognostic classifier in three external independent cohorts, confirming the validity of our molecular classifier in a total of 877 ER positive samples. Furthermore, we find that molecular classifiers may not outperform classical prognostic indices but that they can be used in hybrid molecular-pathological classification schemes to improve prognostic separation. Conclusion: The prognostic molecular classifier presented here is the first to be valid in over 877 ER positive breast cancer samples and across three different microarray platforms. Larger multi-institutional studies will be needed to fully determine the added prognostic value of molecular classifiers when combined with standard prognostic factors.
引用
收藏
页数:13
相关论文
共 36 条
[1]   Molecular classification and molecular forecasting of breast cancer: Ready for clinical application? [J].
Brenton, JD ;
Carey, LA ;
Ahmed, AA ;
Caldas, C .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (29) :7350-7360
[2]   Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival [J].
Chang, HY ;
Nuyten, DSA ;
Sneddon, JB ;
Hastie, T ;
Tibshirani, R ;
Sorlie, T ;
Dai, HY ;
He, YDD ;
van't Veer, LJ ;
Bartelink, H ;
van de Rijn, M ;
Brown, PO ;
van de Vijver, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (10) :3738-3743
[3]  
Cox D.R., 1984, MONOGRAPHS STAT APPL
[4]   Good Old clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers [J].
Edén, P ;
Ritz, C ;
Rose, C ;
Fernö, M ;
Peterson, C .
EUROPEAN JOURNAL OF CANCER, 2004, 40 (12) :1837-1841
[5]   Outcome signature genes in breast cancer: is there a unique set? [J].
Ein-Dor, L ;
Kela, I ;
Getz, G ;
Givol, D ;
Domany, E .
BIOINFORMATICS, 2005, 21 (02) :171-178
[6]   Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer [J].
Ein-Dor, L ;
Zuk, O ;
Domany, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (15) :5923-5928
[7]   Concordance among gene-expression-based predictors for breast cancer [J].
Fan, Cheng ;
Oh, Daniel S. ;
Wessels, Lodewyk ;
Weigelt, Britta ;
Nuyten, Dimitry S. A. ;
Nobel, Andrew B. ;
van't Veer, Laura J. ;
Perou, Charles M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 355 (06) :560-569
[8]   Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer [J].
Foekens, JA ;
Atkins, D ;
Zhang, Y ;
Sweep, FCGJ ;
Harbeck, N ;
Paradiso, A ;
Cufer, T ;
Sieuwerts, AM ;
Talantov, D ;
Span, PN ;
Tjan-Heijnen, VCG ;
Zito, AF ;
Specht, K ;
Hoefler, H ;
Golouh, R ;
Schittulli, F ;
Schmitt, M ;
Beex, LVAM ;
Klijn, IGM ;
Wang, YX .
JOURNAL OF CLINICAL ONCOLOGY, 2006, 24 (11) :1665-1671
[9]   THE NOTTINGHAM PROGNOSTIC INDEX IN PRIMARY BREAST-CANCER [J].
GALEA, MH ;
BLAMEY, RW ;
ELSTON, CE ;
ELLIS, IO .
BREAST CANCER RESEARCH AND TREATMENT, 1992, 22 (03) :207-219
[10]  
Graf E, 1999, STAT MED, V18, P2529