Ligand-dependent inhibition of β-catenin/TCF signaling by androgen receptor

被引:130
作者
Chesire, DR
Isaacs, WB
机构
[1] Johns Hopkins Med Inst, Brady Urol Inst, Res Labs, Baltimore, MD 21287 USA
[2] Johns Hopkins Med Inst, Johns Hopkins Oncol Ctr, Baltimore, MD 21287 USA
关键词
androgen receptor; beta-catenin; TCF/LEF; prostate; nuclear signaling;
D O I
10.1038/sj.onc.1206049
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
beta-catenin signaling may contribute to prostate cancer (CaP) progression. Although beta-catenin is known to upregulate T cell factor (TCF) target gene expression in CaP cells, recent evidence demonstrates its capacity to enhance ligand-dependent androgen receptor (AR) function. Thus, we wished to further understand the interaction between these two pathways. We find in both CaP cells (CWR22-Rv1, LAPC-4, DU145) and non-CaP cells (HEK-293, TSU, SW480, HCT-116) that beta-catenin/TCF-related transcription (CRT), as measured by activation of a synthetic promoter and that of cyclin D1, is inhibited by androgen treatment. This inhibition is AR-dependent, as it only occurs in cells expressing AR endogenously or transiently, and is abrogated by AR antagonists. Additional analyses convey that the ligand-dependent nature of CRT suppression depends on transactivation-competent AR in the nucleus, but not on indirect effects stemming from AR target gene expression. Given the recent work identifying an AR/beta-catenin interaction, and from our finding that liganded AR does not prompt gross changes in the constitutive nuclear localization of TCF4 or mutant beta-catenin, we hypothesized that transcription factor (i.e. AR and TCF) competition for beta-catenin recruitment may explain, in part, androgen-induced suppression of CRT. To address this idea, we expressed an AR mutant lacking its DNA-binding domain (DBD). This receptor could not orchestrate ligand-dependent CRT repression, thereby providing support for those recent data implicating the AR DBD/LBD as necessary for beta-catenin interaction. Further supporting this hypothesis, TCF/LEF overexpression counteracts androgen-induced suppression of CRT, and requires beta-catenin binding activity to do so. Interestingly, TCF4 over-expression potently antagonizes AR function; however, this inhibition may occur independently of beta-catenin/TCF4 interaction. These results from TCF4 over-expression analyses, taken together, provide further evidence that AR-mediated suppression of CRT is a consequence of limiting amounts of beta-catenin, and not AR target gene expression. Our analyses point to a reciprocal balance between AR and CRT function that may shape critical processes during normal prostate development and tumor progression.
引用
收藏
页码:8453 / 8469
页数:17
相关论文
共 99 条
[1]   CREB-binding protein in androgen receptor-mediated signaling [J].
Aarnisalo, P ;
Palvimo, JJ ;
Jänne, OA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (05) :2122-2127
[2]   A FAMILY OF TRANSCRIPTIONAL ADAPTER PROTEINS TARGETED BY THE E1A ONCOPROTEIN [J].
ARANY, Z ;
NEWSOME, D ;
OLDREAD, E ;
LIVINGSTON, DM ;
ECKNER, R .
NATURE, 1995, 374 (6517) :81-84
[3]  
Brisken C, 2000, GENE DEV, V14, P650
[4]   Drosophila Tcf and Groucho interact to repress Wingless signalling activity [J].
Cavallo, RA ;
Cox, RT ;
Moline, MM ;
Roose, J ;
Polevoy, GA ;
Clevers, H ;
Peifer, M ;
Bejsovec, A .
NATURE, 1998, 395 (6702) :604-608
[5]   In vitro evidence for complex modes of nuclear β-catenin signaling during prostate growth and tumorigenesis [J].
Chesire, DR ;
Ewing, CM ;
Gage, WR ;
Isaacs, WB .
ONCOGENE, 2002, 21 (17) :2679-2694
[6]  
Chesire DR, 2000, PROSTATE, V45, P323, DOI 10.1002/1097-0045(20001201)45:4<323::AID-PROS7>3.0.CO
[7]  
2-W
[8]   The androgen receptor represses transforming growth factor-β signaling through interaction with Smad3 [J].
Chipuk, JE ;
Cornelius, SC ;
Pultz, NJ ;
Jorgensen, JS ;
Bonham, MJ ;
Kim, SJ ;
Danielpour, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (02) :1240-1248
[9]   The androgen receptor: genetic considerations in the development and treatment of prostate cancer [J].
Cude, KJ ;
Dixon, SC ;
Guo, Y ;
Lisella, J ;
Figg, WD .
JOURNAL OF MOLECULAR MEDICINE-JMM, 1999, 77 (05) :419-426
[10]  
Culig Z, 1998, PROSTATE, V35, P63, DOI 10.1002/(SICI)1097-0045(19980401)35:1<63::AID-PROS9>3.0.CO